Николай Курчанов - Генетика человека с основами общей генетики. Учебное пособие Страница 5
- Категория: Научные и научно-популярные книги / Медицина
- Автор: Николай Курчанов
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 46
- Добавлено: 2019-02-02 20:27:50
Николай Курчанов - Генетика человека с основами общей генетики. Учебное пособие краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Николай Курчанов - Генетика человека с основами общей генетики. Учебное пособие» бесплатно полную версию:В пособии освещаются все разделы современной генетики, необходимые для понимания генетики человека и психогенетики. Показана методологическая роль генетики в современной биологии. Первые главы посвящены фундаментальным положениям общей генетики. В специальных разделах рассматриваются вопросы медицинской генетики, генной инженерии, генетики поведения, эволюции, психогенетики.Второе издание книги значительно переработано автором с учетом новой информации, опубликованной за последние три года.Пособие предназначено для студентов биологических, педагогических, психологических и социологических факультетов. Представляет интерес для научных работников всех специальностей, занимающихся вопросами, связанными с изучением биологической природы человека.2-е издание, переработанное и дополненное.
Николай Курчанов - Генетика человека с основами общей генетики. Учебное пособие читать онлайн бесплатно
Вирусы обычно обладают специфичностью в отношении клеток организма хозяина.
Геном прокариот представлен одной кольцевой молекулой ДНК, формирующей компактную структуру нуклеоида посредством суперспирализации. Весьма хорошо изучен геном кишечной палочки (Escherichia coli) – классического генетического объекта, у которой идентифицировано более 4200 генов. ДНК E. coli содержит 4,6 млн п. н. Наименьший размер генетического материала у живых организмов (не будем относить к ним вирусы) отмечен у микоплазмы: 600 000 п. н. и около 500 генов. Эти данные и послужили основой для теоретических расчетов, которые показали, что элементарная «машина жизни» может работать при наличии всего 350 генов.
Главная особенность организации генома прокариот – это их объединение в группы, или кластеры, с общей регуляцией. Группа структурных генов прокариот, находящихся под контролем одного регуляторного участка, называется опероном (Miller J., Reznikoff W., 1978). Организация генетического материала по типу оперона позволяет бактериям быстро переключать метаболизм с одного субстрата на другой. Бактерии не синтезируют ферменты определенного метаболического пути в отсутствие необходимого субстрата, но способны в любой момент начать их синтез при появлении этого субстрата. Структура и функционирование оперона были показаны в работах знаменитых французских биохимиков Ж. Моно (1910–1976) и Ф. Жакоба, разделивших с А. Львовым Нобелевскую премию 1965 г. Регуляцию по типу оперона мы рассмотрим ниже.
Особый интерес представляют плазмиды – небольшие кольцевые молекулы ДНК внутри бактериальной клетки. Подобно вирусам, плазмиды способны либо интегрироваться с бактериальной ДНК, либо существовать обособленно от нее. Крупные плазмиды присутствуют в клетке в количестве 1–3 копий, мелкие могут быть представлены десятками копий. Хорошо изучена самая первая из обнаруженных плазмид, крупная плазмида F бактерии E. coli. Она представляет собой кольцевую молекулу ДНК величиной в 100 тыс. п. н. и содержит более 60 генов. Плазмида F обеспечивает содержащим ее бактериальным клеткам возможность взаимодействовать с бесплазмидными бактериями и передавать им свою генетическую информацию.
Многие авторы считают, что плазмиды являются одной из разновидностей вирусов и между ними нет принципиальных различий (Жданов В. М., 1988; Кусакин О. Г., Дроздов А. Л., 1994).
3.2. Генетический материал эукариот
Генетический материал эукариот сконцентрирован в ядре и представлен хромосомами, в которых молекула ДНК образует сложный комплекс с различными белками.
Каждая клетка любого организма содержит определенный набор хромосом. Совокупность хромосом клетки называется кариотипом (рис. 3.1). Количество хромосом в клетке не зависит от уровня организации живых организмов – некоторые протисты имеют их более тысячи. У человека в кариотипе 46 хромосом, у шимпанзе – 48, у крысы – 42, у собаки – 78, у коровы – 60, у дрозофилы – 8, у тутового шелкопряда – 56, у картофеля – 48, у рака-отшельника – 254 и т. д.
В кариотипе соматических клеток выделяются пары одинаковых (по форме и генному составу) хромосом – так называемые гомологичные хромосомы (1-я – материнская, 2-я – отцовская). Набор хромосом, содержащий пары гомологов, называется диплоидным (обозначается 2n). Половые клетки – гаметы, содержат половину диплоидного набора, по одной хромосоме из каждой пары гомологов. Такой набор называется гаплоидным (обозначается n).
Рис. 3.1. Кариотип человека
Исследуется кариотип обычно на стадии метафазы митоза, когда каждая хромосома состоит из двух идентичных хроматид и максимально спирализована. Соединяются хроматиды в области центромеры (первичной перетяжки). В этой области при делении клетки на каждой сестринской хроматиде образуется фибриллярное тельце – кинетохор, к которому присоединяются нити веретена деления.
Концевые участки хромосом получили название теломеры. Они препятствуют слипанию хромосом, т. е. ответственны за их «индивидуальность». Теломеры имеют специфический состав ДНК, связанной со специфическим комплексом белков. Состав теломерной ДНК весьма «консервативен» у разных видов. В последние годы теломеры привлекают к себе внимание в связи с проблемой старения клеток и долголетия. Дело в том, что у взрослого организма с каждым новым делением клетки теряется участок теломеры. Потеря всей теломеры приводит к смерти клетки. Понимание генетического контроля этого явления поможет решить многие проблемы медицины.
Участок хроматиды между центромерой и теломерой называется плечом. Плечи имеют свои обозначения: короткое – р и длинное – q. В зависимости от расположения центромеры различают следующие морфологические типы хромосом:
– метацентрические (p = q);
– субметацентрические (q > p);
– акроцентрические (одноплечие – q).
Такое морфологическое разнообразие характерно для большинства организмов. К нему добавляется разнообразие хромосом по размерам. Не совсем понятен биологический смысл этого явления. Известно, что хромосомы – это не просто «кладовые» генетической информации, а активно функционирующие структуры. Их основная биологическая роль заключается в обеспечении равномерности распределения генетического материала при делении клетки и рекомбинации при мейозе. Возможно, морфологическое разнообразие способствует более успешному выполнению этой роли (Гринев В. В., 2006). Хотя можно отметить, что у одних животных хромосомы морфологически удивительно однообразны, хотя и различаются по размерам (лошадь, корова), у других – разнообразны(человек).
Некоторые хромосомы кариотипа имеют вторичную перетяжку, где обычно располагается ядрышковый организатор – область формирования ядрышка. В ядрышке происходит синтез р-РНК и образование субъединиц рибосом. В ядрах разных организмов количество ядрышек варьирует, у некоторых их нет совсем. Часто несколько ядрышковых организаторов участвуют в формировании одного ядрышка.
Для цитогенетического анализа все хромосомы, входящие в кариотип, должны быть идентифицированы. Основной метод идентификации хромосом на цитологических препаратах – это различные способы дифференциальной окраски (Q-, G-, R-, C– и др.), которые базируются на применении определенных красителей, специфически связывающихся с участками ДНК разного строения. Методы дифференциальной окраски, разработанные в конце 1960 – начале 1970-х гг., открыли новую страницу в цитогенетике (Захаров А. Ф., 1977). Каждая дифференциально окрашенная хромосома имеет специфический рисунок исчерченности, что позволяет ее идентифицировать. Интересно, что механизм дифференциальной окраски до сих пор не раскрыт.
Кариотип в цитогенетике принято представлять в виде схемы, в которой хромосомы располагают в определенном порядке, по группам, объединяющим хромосомы одного морфологического типа. Внутри группы хромосомы обычно располагают по размеру в убывающем порядке. Такая схема называется идиограммой. Каждая хромосома идиограммы имеет свой постоянный номер. Гомологичные хромосомы имеют одинаковый номер, но изображается на идиограмме только одна их них.
Кариотипы наиболее важных генетических объектов, таких как человек, лабораторные и сельскохозяйственные животные, стандартизированы (Paris Conference, 1971; Reading Conference, 1976). Стандарты предполагают закрепление определенного номера, группы и схемы дифференциальной исчерченности для всех хромосом объекта. Схемы исчерченности разрабатываются для каждого метода окраски и уровня спирализации. Разработаны принципы нумерации каждой полосы хромосомы, изменение исчерченности в зависимости от уровня спирализации, обозначение различных хромосомных перестроек. С этими принципами мы ознакомимся при изучении кариотипа человека.
Несмотря на ведущую роль хромосом в наследственности, не все эукариотические гены находятся в ядре. Существуют клеточные структуры, обладающие собственной генетической информацией.
Митохондрии имеют кольцевые мт-ДНК в количестве 2–10 копий. Количество митохондрий в клетке может достигать 1000. Размер митохондриального генома различен у разных эукариот. У млекопитающих он мал, у грибов и растений значительно больше. Например, мт-ДНК человека содержит всего 16 569 п. н., а мт-ДНК дрожжей – 78 520 п. н. В какой-то степени наблюдается закономерность: уменьшение доли генетической информации митохондрий с повышением уровня организации. Это наводит на мысль, что генетическая организация митохондрий разных организмов должна иметь определенные различия.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.