Биологическая химия - Лелевич Владимир Валерьянович Страница 56

Тут можно читать бесплатно Биологическая химия - Лелевич Владимир Валерьянович. Жанр: Научные и научно-популярные книги / Медицина. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Биологическая химия - Лелевич Владимир Валерьянович

Биологическая химия - Лелевич Владимир Валерьянович краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Биологическая химия - Лелевич Владимир Валерьянович» бесплатно полную версию:

Биологическая химия - Лелевич Владимир Валерьянович читать онлайн бесплатно

Биологическая химия - Лелевич Владимир Валерьянович - читать книгу онлайн бесплатно, автор Лелевич Владимир Валерьянович

6. С помощью циклических форм нуклеотидов (цАМФ, цГМФ) осуществляется передача в клетку сигналов гормонов, факторов роста, нейромедиаторов и некоторых других регуляторных молекул.

Биосинтез пуриновых нуклеотидов

В 40–50-х годах XX столетия при проведении опытов с мечеными изотопами удалось выяснить происхождение атомов пуринового ядра при синтезе пуринов de novo. Было установлено, что в формировании кольца принимают участие аминокислоты ( аспарагиновая, глициновая, глутаминовая) СО2 и два одноуглеродных производных тетрагидрофолата: метенил-Н4-фолат. Этим способом образуется основное количество пуриновых нуклеотидов, тогда как нуклеотиды, синтезирующиеся за счёт повторного использования азотистых оснований или нуклеозидов, составляют не более 10–20% общего фонда этих соединений.

Регуляция синтеза пуриновых нуклеотидов

Образование АМФ и ГМФ регулируется аллостерическими механизмами по принципу обратной связи (рис. 26.1). АМФ и ГМФ ингибируют активность ферментов синтеза фосфорибозиламина, а также, соответственно, активность аденилосукцинатсинтетазы и ИМФ-дегидрогеназы. При этом АТФ и ГТФ оказывают перекрестное активирующее влияние.

Биосинтез пиримидиновых нуклеотидов

Фонд пиримидиновых нуклеотидов, подобно пуриновым нуклеотидам, в основном синтезируется из простых предшественников de novo, и только 10–20% от общего количества образуется по «запасным» путям из азотистых оснований или нуклеозидов.

В отличие от синтеза пуринов, где формирование гетероциклического основания осуществляется на остатке рибозо-5-фосфата, пиримидиновое кольцо синтезируется из простых предшественников: глутамина, СО2 и аспарагиновой кислоты и затем связывается с рибозо-5-фосфатом, полученным от ФРДФ.

Процесс протекает в цитозоле клеток. Синтез ключевого пиримидинового нуклеотида – УМФ идёт с участием 3 ферментов, 2 из которых полифункциональны.

Распад нуклеиновых кислот в желудочно-кишечном тракте и тканях

Нуклеиновые кислоты поступают в организм с пищей главным образом в составе нуклеопротеинов и высвобождаются в результате действия протеолитических ферментов желудочно-кишечного тракта. Далее под действием дезоксирибонуклеазы и рибонуклеазы панкреатического сока нуклеиновые кислоты гидролизуются до нуклеотидов. Нуклеотиды под воздействием нуклеотидаз или фосфатаз распадаются до нуклеозидов, которые могут всасываться или гидролизоваться далее до азотистых оснований и пентоз.

В тканях нуклеиновые кислоты гидролизуются дезоксирибонуклеазами (ДНК-азы) и рибонуклеазами (РНК-азы) до нуклеотидов, которые под действием нуклеотидаз теряют остаток фосфора. Образующиеся нуклеозиды пуринового и пиримидинового ряда подвергаются дальнейшему катаболизму.

Нарушения обмена нуклеотидов

Ксантинурия

Ксантинурия – наследственная энзимопатия, связанная с дефектом ксантиноксидазы, что приводит к нарушению катаболизма пуринов до мочевой кислоты. В плазме крови и моче может наблюдаться 10-ти кратное снижение уровня мочевой кислоты, но увеличивается в 10 и более раз экскреция ксантина и гипоксантина. Основное клиническое проявление – образование ксантиновых конкрементов, величиной до нескольких миллиметров, коричневого цвета, сравнительно мягкой консистенции. Постепенно может развиться патология почек.

Оротацидурия

Оротацидурия – наследственное заболевание связанное с утратой двух ферментов пути синтеза пиримидинов – оротат-фосфорибозилтрансферазы и оротидиндекарбоксилазы (I тип) или только отсутствием оротидиндекарбоксилазы (II тип). В детском возрасте для больных характерны отставание в развитии, мегалобластическая анемия, оротовая ацидурия, подверженность инфекциям. Организм испытывает «пиримидиновый голод». С мочой при заболевании I типа может выделяться до 1,5 г в сутки оротовой кислоты, что в 1000 раз превышает норму. Вместе с тем, заболевание легко поддается лечению уридином.

Подагра

Мочевая кислота, являясь конечным продуктом распада пуринов, выделяется из организма с мочой. При усиленном образовании мочевой кислоты в тканях организма развивается гиперурикемия. Это состояние может быть вызвано наследственными дефектами обмена пуринов, например, нарушением реутилизации пуриновых азотистых оснований (синдром Леша-Наийхана), а также наблюдается при заболеваниях крови, почек, отравлениях свинцом и других состояниях. Гиперурикемия часто приводит к развитию подагры. Это заболевание характеризуется отложением кристаллов солей мочевой кислоты (уратов) в суставах(преимущественно плюснефалангового большого пальца) и вокруг них, в мягких тканях, местах прикрепления связок, сухожилий. Постепенно развивается полиартрит и появляются подагрические узлы. Хронический подагрический артрит приводит к деформации сустава. При отложении кристаллов в почках развивается мочекаменная болезнь. Подагрой страдают 0,3% – 1,7% взрослого населения. Мужчины болеют в 20 раз чаще женщин. Для лечения подагры используют аллопуринол – структурный аналог гипоксантина. Аллопуринол блокирует ксантиноксидазу и уменьшает образование мочевой кислоты.

Глава 27. Регуляция и взаимосвязь метаболизма

Для нормального функционирования организма должна осуществляться точная регуляция потока метаболитов по анаболическим и катаболическим путям. Все сопутствующие химические процессы должны протекать со скоростями, отвечающими требованиям организма как единого целого в условиях окружающей среды. Генерация АТФ, синтез макромолекул, транспорт, секреция, реабсорбция и другие процессы должны чутко реагировать на изменения в окружении, в котором находится клетка, орган или весь организм. Клеточный метаболизм основан на принципе максимальной экономии. Клетка потребляет в каждый данный момент как раз такое количество питательных веществ, которое позволяет ей удовлетворять свои энергетические нужды. Такая высокая организация и скоординированность метаболизма достигается с помощью регуляторных механизмов. Эти механизмы достаточно разнообразны.

Различают несколько уровней регуляции метаболизма:

1. Молекулярный.

2. Клеточный.

3. Органный (тканевой).

4. Организменный.

По времени достижения регуляторного эффекта различают быструю регуляцию (действующую в течение секунд и минут) и медленную регуляцию (в течение часов и суток).

Основными регуляторными механизмами являются:

1. Регуляция на уровне мембран.

2. Регуляция с участием циклических нуклеотидов и других вторичных посредников.

3. Регуляция количества ферментов.

4. Регуляция ферментативной активности.

5. Гормональная регуляция.

Регуляция на уровне мембран может осуществляться посредством нескольких механизмов. Во-первых, это избирательная проницаемость мембран для различных метаболитов и ионов. Во-вторых, способность мембран фиксировать гормоны с помощью рецепторов. В-третьих, ферментативная активность мембран. На уровне мембран реализуются, по крайней мере частично, такие регуляторные факторы, как доступность субстратов и коферментов, удаление продуктов реакции.

Циклические нуклеотиды и другие вторичные посредники участвуют в реализации действия целого ряда гормонов.

Регуляция количества ферментов.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.