Биологическая химия - Лелевич Владимир Валерьянович Страница 58
- Категория: Научные и научно-популярные книги / Медицина
- Автор: Лелевич Владимир Валерьянович
- Страниц: 71
- Добавлено: 2020-09-15 21:53:25
Биологическая химия - Лелевич Владимир Валерьянович краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Биологическая химия - Лелевич Владимир Валерьянович» бесплатно полную версию:Биологическая химия - Лелевич Владимир Валерьянович читать онлайн бесплатно
3. В печени активно протекает глюконеогенез – синтез глюкозы из неуглеводных предшественников (лактат, пируват, глицерол, гликогенные аминокислоты). Благодаря глюконеогенезу в организме взрослого человека образуется примерно 70 г глюкозы в сутки. Активность глюконеогенеза резко возрастает при голодании на 2-е сутки, когда запасы гликогена в печени исчерпаны.
Благодаря глюконеогенезу печень участвует в цикле Кори – процессе превращения молочной кислоты, образующейся в мышцах, в глюкозу.
4. В печени осуществляется превращение фруктозы и галактозы в глюкозу.
5. В печени происходит синтез глюкуроновой кислоты.
Рис. 28.1. Участие глюкозо-6-фосфата в метаболизме углеводов
Роль печени в липидном обмене
Печень участвует во всех этапах липидного обмена, начиная с переваривания липидов и заканчивая специфическими метаболическими превращениями отдельных липидных фракций:
1. синтез желчных кислот и образование желчи;
2. β-окисление жирных кислот;
3. биосинтез жирных кислот;
4. образование кетоновых тел;
5. распад и синтез фосфолипидов;
6. синтез холестерола и образование его эфиров; соотношение эфиры холестерина/свободный холестерин в норме составляет примерно 0,5 – 0,7 %; снижение этого коэффициента до 0,3 – 0,4 % наблюдается при поражениях печени и является неблагоприятным признаком;
7. основное место синтеза липопротеинов очень низкой плотности и липопротеинов высокой плотности;
8. гидроксилирование витамина D по 25-му положению.
Роль печени в обмене аминокислот и белков
Печень играет центральную роль в обмене белков и других азотсодержащих соединений.
Она выполняет следующие функции:
1. синтез специфических белков плазмы: - в печени синтезируется: 100 % альбуминов, 75 – 90 % α-глобулинов, 50 % β-глобулинов
2. единственный орган, где синтезируются белки свертывающей системы крови – протромбин, фибриноген, проконвертин, проакцелерин;
3. активно протекают реакции трансаминирования и дезаминирования аминокислот;
4. биосинтез мочевины происходит исключительно в печени;
5. образование мочевой кислоты происходит в основном в печени, так как здесь много фермента ксантиноксидазы, при участии которого продукты распада пуриновых оснований (гипоксантин и ксантин) превращаются в мочевую кислоту;
6. синтез креатина и холина.
В печени происходит детоксикация различных веществ.
Обезвреживающая функция печени
Печень является главным органом, где про обезвреживании естественных метаболитов (билирубин, гормоны, аммиак) и чужеродных веществ. Чужеродными веществами, или ксенобиотиками, называют вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей или в качестве источников энергии. К ним относят лекарственные препараты, продукты хозяйственной деятельности человека, вещества бытовой химии и пищевой промышленности (консерванты, красители).
Обезвреживание нормальных метаболитов
1. Обезвреживание пигментов. В клетках ретикулоэндотелиальной системы печени протекает катаболизм гема до билирубина, конъюгация билирубина с глюкуроновой кислотой в гепатоцитах и распад в гепатоцитах поступающего из кишечника уробилиногена до непигментных продуктов.
2. Обезвреживание аммиака. Аммиак – высокотоксичное соединение, особо опасное для мозга. Основным механизмом обезвреживания аммиака в организме является биосинтез мочевины в печени. Мочевина – малотоксичное соединение и легко выводится из организма с мочой.
3. Инактивация гормонов. Печени принадлежит значительная роль в инактивации гормонов. Многие пептидные гормоны гидролизуются в печени при участии протеолитических ферментов. Например, фермент инсулиназа гидролизует пептидные цепи А и В инсулина. Катаболизм адреналина и норадреналина происходит в печени путем дезаминирования моноаминооксидазой, метилирования и конъюгации с серной и глюкуроновой кислотами. Продукты метаболизма выводятся с мочой.
Обезвреживание ксенобиотиков
Обезвреживание большинства ксенобиотиков происходит в 2 фазы:
1. фаза химической модификации;
2. фаза коньюгации.
Химическая модификация – это процесс ферментативной модификации исходной структуры ксенобиотика, в результате которой происходит:
1. разрыв внутримолекулярных связей;
2. присоединение к молекуле дополнительных функциональных групп (-СН3, -ОН, -NH2),
3. удаление функциональных групп путем гидролиза.
Типы модификаций:
1. окисление (микросомальное, пероксисомальное);
2. восстановление;
3. изомеризация;
4. ацетилирование, метилирование, гидроксилирование;
5. гидролиз и т.д.
Система обезвреживания включает множество разнообразных ферментов (оксидоредуктазы, изомеразы, лиазы, гидролазы), под действием которых практически любой ксенобиотик может быть модифицирован. Наиболее активны ферменты метаболизма ксенобиотиков в печени.
В результате химической модификации, как правило, ксенобиотики становятся более гидрофильными, повышается их растворимость, и они легче выделяются из организма с мочой. Кроме этого, дополнительные функциональные группы необходимы, чтобы вещество вступило в фазу конъюгации.
Коньюгация – процесс образования ковалентных связей между ксенобиотиком и эндогенным субстратом. Образование связей происходит, как правило, по ОН- или NH2-группе ксенобиотика. Образовавшийся коньюгат малотоксичен и легко выводится из организма с мочой.
Выделяют глюкуронидную, сульфатную, тиосульфатную, ацетильную коньюгации. В них принимают участие эндогенные соединения, образующиеся в организме с затратой энергии: УДФ-глюкуронат, ФАФС, тиосульфат, ацетил-КоА.
Рис. 28.2. Распад гемоглобина
Катаболизм гемоглобина
1. Катаболизм гема. Билирубин образуется при распаде гемоглобина (рис. 28.2). Этот процесс протекает в клетках печени, селезенки и костного мозга. Билирубин является основным желчным пигментом у человека. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека – примерно 250–350 мг. Дальнейший метаболизм билирубина происходит в печени.
2. Метаболизм билирубина. Билирубин, образованный в клетках РЭС селезёнки и костного мозга, называется свободным (неконьюгированным) или непрямым, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови (альбуминах) и для его определения в крови необходимо предварительное осаждение белков спиртом. После этого билирубин определяют реакцией с диазореактивом Эрлиха. Свободный (непрямой) билирубин не проходит через почечный барьер и в мочу не попадает.
Каждая молекула альбумина связывает 2 (или 3) молекулы билирубина. При низком содержании альбумина в крови, а также при вытеснении билирубина из центров связывания на поверхности альбумина высокими концентрациями жирных кислот, лекарственных веществ (например, сульфаниламиды) увеличивается количество билирубина, не связанного с альбуминами. Он может проникать в клетки мозга и повреждать их.
Комплекс альбумин-билирубин с током крови попадает в печень, где происходит его превращение в прямой билирубин путем коньюгации с глюкуроновой кислотой. Реакцию катализирует фермент УДФ-глюкуронилтрансфераза (рис. 28.3). Образующийся билирубиндиглюкуронид получил название прямого (коньюгированного) билирубина или связанного. Он растворим в воде и дает прямую реакцию с диазореактивом Эрлиха.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.