Аурика Луковкина - Полный курс за 3 дня. Микробиология Страница 6

Тут можно читать бесплатно Аурика Луковкина - Полный курс за 3 дня. Микробиология. Жанр: Научные и научно-популярные книги / Медицина, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Аурика Луковкина - Полный курс за 3 дня. Микробиология

Аурика Луковкина - Полный курс за 3 дня. Микробиология краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Аурика Луковкина - Полный курс за 3 дня. Микробиология» бесплатно полную версию:
Данный учебник предназначен для студентов медицинских ВУЗов, учащихся медицинских колледжей, а также абитуриентов. В нем содержатся сведения об ультраструктуре и физиологии бактерий, рассматриваются вопросы иммунологии и вирусологии, подробно описаны строение и морфология возбудителей различных инфекций, уделено внимание основам медицинской биотехнологии и генной инженерии.

Аурика Луковкина - Полный курс за 3 дня. Микробиология читать онлайн бесплатно

Аурика Луковкина - Полный курс за 3 дня. Микробиология - читать книгу онлайн бесплатно, автор Аурика Луковкина

Процессы питания должны обеспечивать энергетические потребности бактериальной клетки.

По источникам энергии микроорганизмы делят на:

1) фототрофы (способны использовать солнечную энергию);

2) хемотрофы (получают энергию за счет окислительно-восстановительных реакций);

3) хемолитотрофы (используют неорганические соединения);

4) хемоорганотрофы (используют органические вещества). Факторами роста бактерий являются витамины, аминокислоты, пуриновые и пиримидиновые основания, присутствие которых ускоряет рост.

Среди бактерий выделяют:

1) прототрофы (способны сами синтезировать необходимые вещества из низкоорганизованных);

2) ауксотрофы (являются мутантами прототрофов, потерявшими гены; ответственны за синтез некоторых веществ – витаминов, аминокислот, поэтому нуждаются в этих веществах в готовом виде).

Микроорганизмы ассимилируют питательные вещества в виде небольших молекул, поэтому белки, полисахариды и другие биополимеры могут служить источниками питания только после расщепления их экзоферментами до более простых соединений.

Метаболиты и ионы поступают в микробную клетку различными путями.

Пути поступления метаболитов и ионов в микробную клетку:

1) пассивный транспорт (без энергетических затрат):

а) простая диффузия;

б) облегченная диффузия (по градиенту концентрации, с помощью белков-переносчиков);

2) активный транспорт (с затратой энергии, против градиента концентрации; при этом происходит взаимодействие субстрата с белком-переносчиком на поверхности цитоплазматической мембраны).

Встречаются модифицированные варианты активного транспорта – перенос химических групп. В роли белков-переносчиков выступают фосфорилированные ферменты, поэтому субстрат переносится в фосфорилированной форме. Такой перенос химической группы называется транслокацией.

3. Метаболизм бактериальной клетки

Обмен веществ (метаболизм) по сути является совокупностью двух взаимосвязанных противоположных процессов – катаболизма (диссимиляции), который представляет собой распад веществ в процессе ферментативных реакций и накопления выделяемой при этом энергии в молекулах АТФ, и анаболизма (ассимиляции), представляющего собой синтез веществ с затратой энергии.

Изучение обмена веществ у бактерий возможно с помощью применения физико-химических и биохимических методов исследования, которые проводятся в ходе культивирования бактерий в определенных условиях на специальных питательных средах, содержащих определенное соединение в качестве субстрата для трансформации.

Особенности метаболизма у бактерий:

1) многообразие используемых субстратов;

2) интенсивность процессов метаболизма;

3) направленность всех процессов метаболизма на обеспечение процессов размножения;

4) преобладание процессов распада над процессами синтеза;

5) наличие экзо– и эндоферментов метаболизма.

В процессе метаболизма выделяют два вида обмена:

1) пластический (конструктивный):

а) анаболизм (с затратами энергии);

б) катаболизм (с выделением энергии);

2) энергетический обмен (протекает в дыхательных мезосомах):

а) дыхание;

б) брожение.

В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Аэробы способны получать энергию только путем дыхания и постоянно нуждаются в молекулярном кислороде как конечном акцепторе электронов. Для них характерно окисление, при котором конечным акцептором электронов является кислород.

Облигатные анаэробы растут только в бескислородной среде или в среде с низким значением редокс-потенциала (Eh). Как тип окислительно-восстановительных процессов для них характерна ферментация с переносом электронов от субстрата-донора к субстрату-акцептору. Из этого можно сделать вывод, что для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.

Факультативные анаэробы способны расти как в присутствии кислорода, так и в его отсутствие, используя при этом в качестве терминальных акцепторов электронов молекулярный кислород или органические соединения. Кроме того, среди факультативных анаэробов встречаются бактерии, способные переключаться с окисления на ферментацию, а также такие бактерии, которые способны расти в присутствии атмосферного кислорода, при этом не используя его, а энергию получают исключительно с помощью брожения.

В микробной клетке ферменты являются биологическими катализаторами, отличающимися от других катализаторов исключительной эффективностью и высокой специфичностью как в отношении природы катализируемой реакции, так и в отношении структуры субстрата. Ферменты обеспечивают протекание реакций в физиологических условиях. Скорость этих реакций зависит от условий, в которых находится данный микроорганизм, в частности от температуры среды, ее рН и других факторов.

По строению среди ферментов выделяют:

1) простые ферменты (белки);

2) сложные; состоят из белковой (активного центра) и небелковой частей; необходимы для активизации ферментов.

Различают также:

1) конституитивные ферменты (синтезируются постоянно независимо от наличия субстрата);

2) индуцибельные ферменты (синтезируются только в присутствии субстрата).

Набор ферментов в клетке строго индивидуален для вида. Способность микроорганизма утилизировать субстраты за счет своего набора ферментов определяет его биохимические свойства.

Ферменты, образуемые микроорганизмами, могут локализоваться в различных частях клетки или быть связанными с ее иными структурами, также могут выделяться в окружающую среду. Поэтому по месту действия ферментов среди них выделяют:

1) экзоферменты – действуют вне клетки; принимают участие в процессе распада крупных молекул, которые не могут проникнуть внутрь бактериальной клетки; характерны для грамположительных бактерий;

2) эндоферменты – действуют в самой клетке, обеспечивают синтез и распад различных веществ.

В зависимости от катализируемых химических реакций все ферменты делят на шесть классов:

1) оксидоредуктазы (катализируют окислительно-восстановительные реакции между двумя субстратами);

2) трансферазы (осуществляют межмолекулярный перенос химических групп);

3) гидролазы (осуществляют гидролитическое расщепление внутримолекулярных связей);

4) лиазы (присоединяют химические группы по двум связям, а также осуществляют обратные реакции);

5) изомеразы (осуществляют процессы изомеризации, обеспечивают внутреннюю конверсию с образованием различных изомеров);

6) лигазы, или синтетазы (соединяют две молекулы, вследствие чего происходит расщепление пирофосфатных связей в молекуле АТФ).

Любой микроорганизм имеет свой ферментный состав, который определяется его геномом и является достаточно постоянным признаком. Поэтому определение ферментов имеет большое значение при дифференцировке и идентификации бактерий. При этом некоторые ферменты могут способствовать проявлению патогенных свойств различными возбудителями инфекционных болезней человека.

4. Виды пластического обмена

Основными видами пластического обмена являются:

1) белковый;

2) углеводный;

3) липидный;

4) нуклеиновый;

5) минеральный.

Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты.

Распад белков в аэробных условиях называется тлением, в анаэробных – гниением.

В результате распада аминокислот клетка получает ионы аммония, необходимые для формирования собственных аминокислот. Бактериальные клетки способны синтезировать все 20 аминокислот. Ведущими из них являются аланин, глютамин, аспарагин. Они включаются в процессы переаминирования и трансаминирования. В белковом обмене процессы синтеза преобладают над распадом, при этом происходит потребление энергии.

В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Сложные углеводы внешней среды могут расщеплять только те бактерии, которые выделяют ферменты – полисахаридазы. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются до моносахаров, причем внутрь клетки может поступать только глюкоза. Часть ее идет на синтез собственных полисахаридов в клетке, другая часть подвергается дальнейшему расщеплению, которое может идти по двум путям: по пути анаэробного распада углеводов – брожению (гликолизу) и в аэробных условиях – по пути горения.

В зависимости от конечных продуктов выделяют следующие виды брожения:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.