Марина Чернышева - Временнáя структура биосистем и биологическое время Страница 9
- Категория: Научные и научно-популярные книги / Медицина
- Автор: Марина Чернышева
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 11
- Добавлено: 2019-02-04 10:44:09
Марина Чернышева - Временнáя структура биосистем и биологическое время краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Марина Чернышева - Временнáя структура биосистем и биологическое время» бесплатно полную версию:На основе новейших экспериментальных данных рассматриваются вопросы природы, свойств и функций биологического времени. Анализируются компоненты временнóй структуры организма, сенсоры времени и генераторы временных процессов. Особое внимание уделено клеточно-молекулярным, тканевым и органным генераторам биологического времени, а также системам их синхронизации. Обосновывается представление о гормональной и временнóй системах синхронизации. Рассматриваются особенности гомеостатической регуляции эндогенного времени относительно его set point. Обсуждаются возможности бессознательной и сознательной коррекции субъективного времени.Книга адресуется научным сотрудникам, преподавателям вузов и студентам, специализирующимся в области биологии и медицины
Марина Чернышева - Временнáя структура биосистем и биологическое время читать онлайн бесплатно
На клеточном уровне классическим примером является цикл деления клетки, в котором, как известно, стадии интерфазы в связи с интенсивными процессами синтеза белков (G1, G2), редупликации ДНК и формированием нуклеосом (S) отличает бóльшая продолжительность. Они подготавливают клетку к быстрому прохождению фазы М (митоза), заканчивающейся карио- и цитокинезом. Образовавшиеся дочерние клетки вновь начинают прохождение стадий интерфазы. Наибольшей вариабельностью длительности обладает стадия G1, тогда как стадию S и фазу М отличает стабильность темпоральных параметров. Прямое измерение продолжительности клеточного цикла с помощью цейтраферной видеосъемки показало, что у клеток линии L-929 она в целом составляет около 14 часов (Петров и др., 2012). У разных типов клеток длительность цикла может различаться, как и число делений. Считается, что у большинства соматических клеток человека число клеточных циклов в течение онтогенеза примерно равно 52 (лимит Хейфлика), что объясняется геномными (Оловников, 2003, и др.) и эпигенетическими факторами (Галицкий, 2009). Неделящаяся клетка переходит в стадию G0 или подвергается апоптозу, который могут ускорять про-апоптотические факторы (например, белок р75). Следовательно, число клеточных циклов фактически определяет продолжительность «стрелы времени» для исходной клетки.
Число циклов может определять и длительность монофазных процессов. Hапример, число циклов ретроэндоцитоза, которому подвергается инсулиноподобный фактор-1 (IGF-1) после связывания с рецептором, определяет длительность его эффектов в субмембранной зоне цитозоля.
Заметим, что число эстральных циклов у самок млекопитающих, накладывающихся на репродуктивный период «стрелы времени», также определяет его длительность, что имеет видовую специфику (McCraken et al., 1999). Как и клеточный, эстральный цикл отличают полифазность и сложная временная структура, обусловленная регулирующим влиянием многих циклически секретируемых гормонов, нейромедиаторов и цитокинов на периферии и в центральной нервной системе. Вместе с тем, в рамках каждого цикла можно отметить элементы асимметрии, выраженные через параметры временного процесса: разную длительность фаз митоза, или же изменение временных характеристик фаз 1-4-го циклов сна от вечера к утру (Ковальзон, 2012).
Повторяемость и относительная устойчивость временной структуры цикла, а также его суммарной длительности определяют цикл как временной стереотип с меньшими затратами энергии и минимумом роста обобщенной энтропии по сравнению с асимметричными временными процессами.
Б. РитмыНачиная с Гераклита и до нашего времени, многие исследователи обращали внимание на ритмы природных явлений и взаимосвязь с ними жизнедеятельности живых организмов. Временна́я организация ритмов более проста по сравнению с циклами: для нее характерно синусоидальное изменение определенного параметра, среднее значение которого называется мезором, наибольшее и наименьшее значения – соответственно акрофазой и батифазой, а за период ритма принимается длительность паузы между возникновением двух сходных значений параметра, которые он принимает на двух соседних акро- или батифазах. Возникновение ритмов с разной длительностью периода обусловлено воздействием на биосистемы разных комплексов факторов (Романов, 2000; Wilcockson et al., 2008, и др.).
Синусоидальный характер биоритмов указывает на вероятность волновой природы времени как явления, сопряженного с энергией. Распространенность ритмов как временных процессов жизнедеятельности обусловлена тем, что ритмы способствуют структуризации экзо- и эндогенной информации и потоков энергии, уменьшают разброс значений определенных гомеостатических констант (температуры тела, активности ферментов, содержания Са+2 в крови, двигательной активности и т. д.). Тем самым ритмы уменьшают проявления хаоса, увеличивают коэффициент порядка h и, следовательно, максимально противодействуют росту обобщенной энтропии (Чернышева, Ноздрачев, 2006). Это соответствует представлению о циркадианных и сезонных ритмах как о механизме опережающей гомеостатической регуляции, направленном на реализацию адаптивной стратегии обмена веществ и снижения энергетических потерь (Алпатов, 2000, и др.). Следовательно, можно предположить, что необходимость в подстройке к экзогенному ритму (например, к циркадианному ритму освещенности) у организма возникает в случае энергетического дисбаланса и недостаточности эндогенных механизмов, генерирующих энергию (при гиподинамии и гипометаболизме) и/или снижающих уровень обобщенной энтропии. Тогда внешние «задатчики» ритма могут выступить в роли энергетического донора и протектора (через генез/поддержание эндогенных ритмов) роста обобщенной энтропии. В роли таких внешних «задатчиков» ритмов, с которыми могут синхронизироваться эндогенные процессы, выступают ближайшие (но, по-видимому, не единственные) космические тела, Солнце и Луна, усиливающие слабые воздействия потока субстанционального времени и «транслирующие» их на биосистемы Земли на своем энергетическом «языке»: энергии света, электромагнитного и гравитационного полей. Такая синхронизация обусловливает соответствующие временные параметры ритмов, среди которых различают определяемые: около-суточным (циркадианным) ритмом освещенности, 20–28 часа; лунными сутками (циркалунарным ритмом), 24 ч 50 мин, в течение которых 2 прилива и 2 отлива определяют циркатидальный (около-приливный) ритм, длительность периода которого равна 12,4 часа, а фазы смещаются ежедневно примерно на 50 мин. Семилунарный ритм связан с минимальными приливами (neap tides), его период составляет 15 дней. Максимальной величины (так называемые сизигийные приливы) они достигают дважды в течение синодического, или лунного, месяца (29,5 солнечных суток): в новолуние и полнолуние. Фазы Луны обусловливают цирка-септальный (околонедельный) ритм с длительностью периода 7,0 дня. Смена времен года определяет цирканнуальные (окологодовые) ритмы с периодом 365 дней. Цикл активности Солнца определяет 11-ти летние ритмы. Есть и другие многолетние ритмы с бóльшим периодом.
Исследования взаимодействия разных типов ритмов, например, околосуточных ритмов освещенности и приливных ритмов на поведение ракообразных прибрежной зоны, или околосуточных и циркалунарных ритмов показали возможность разных источников их генеза на уровне организма при высокой степени корреляции.
В отсутствие внешних источников энергии, задающих ритм, период эндогенного ритма слегка отличается по параметрам от нормы в естественной среде. Период такого свободно бегущего (free-run) ритма называется tau.
Благодаря своим свойствам ритмы поддерживают (возможно, в большей степени, чем другие временные процессы), значения гомеостатических констант организма (температуру тела, объем памяти и воспринимаемой информации, содержание сахара в крови, и т. п.). в рамках оптимума, задаваемого гено- и фенотипом.
Согласно представлениям В. И. Вернадского, синхронизация ритмов геологического времени, приводит к накоплению энергии. То же, по-видимому, характерно и для биоритмов как симметричных временных процессов. На это указывает синхрония ритмов активности сердца и дыхательной системы, описываемая при мышечных нагрузках в условиях нарастания кислородного долга мышц (Покровский и др., 2002) Она направлена на компенсацию гипоксии через усиление тканевого дыхания, т. е. на рост энергетического потенциала организма. Известно, что в гипоталамусе и неокортексе синхронизация ритмов соответственно импульсной активности нейронов и электроэнцефалограммы используется как механизм усиления и выделения из шума сигнала и/или ответа на воздействие. Синхронизация и увеличение амплитуды висцеральных ритмов при активации симпато-адреналовой системы и процессов гликолиза и липолиза в ходе запуска стресс-ответа также служат увеличению уровня энергетического потенциала организма, что необходимо для выбора или создания адекватной программы поведения и ее реализации. Большинство циклов и ритмов можно рассматривать как временные стереотипы, которые поддерживают и гомеостатируют энергетический потенциал организма в силу наложения на стрелу времени онтогенеза. Поскольку состояние гомеостазиса соответствует «норме хаотичности» открытой неустойчивой термодинамической биосистемы, характеризуемой минимальным ростом уровня энтропии и возможностью обратимых процессов (Климонтович, 1996), то можно допустить относительную обратимость именно симметричных временных процессов при гомеостазисе в рамках оптимума нормы реакции фенотипа организма.
Глава III
Временная структура организма. Клеточные генераторы эндогенного времени
Согласно принятой нами модели временной структуры организма генераторы временных процессов являются одним из ее важнейших компонентов, обеспечивая относительную стабильность временной структуры и биологического времени. На разных структурных уровнях к ним относятся: клеточные осцилляторы, тканевые водители ритма и объединяющие их таймеры соответствующих физиологических систем. Совокупность таймеров определяет темпоральные характеристики хронотопа целостного организма. (Чернышева, 2005). К настоящему времени наиболее разработаны представления о генераторах ультрадианных и циркадианных ритмов, которые на клеточно-молекулярном уровне представлены осцилляторами.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.