Митио Каку - Физика невозможного Страница 10
- Категория: Научные и научно-популярные книги / Физика
- Автор: Митио Каку
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 83
- Добавлено: 2019-08-13 10:52:58
Митио Каку - Физика невозможного краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Митио Каку - Физика невозможного» бесплатно полную версию:Еще совсем недавно нам трудно было даже вообразить сегодняшний мир привычных вещей. Какие самые смелые прогнозы писателей-фантастов и авторов фильмов о будущем имеют шанс сбыться у нас на глазах? На этот вопрос пытается ответить Мичио Каку, американский физик японского происхождения и один из авторов теории струн. Из книги вы узнаете, что уже в ХXI в., возможно, будут реализованы силовые поля, невидимость, чтение мыслей, связь с внеземными цивилизациями и даже телепортация и межзвездные путешествия.
Митио Каку - Физика невозможного читать онлайн бесплатно
Пока ученым удалось продемонстрировать отрицательный показатель преломления только для красного света. Но метод надо развивать, и следующим шагом должно стать создание метаматериала, который мог бы полностью обвести красный луч вокруг объекта, сделав его невидимым для красного света.
Дальнейшее развитие можно ожидать также в области «фотонных кристаллов». Цель технологии фотонных кристаллов — создать чип, который использовал бы для обработки информации свет, а не электричество. Предполагается применить нанотехнологии для вытравливания на подложке крошечных компонентов — так, чтобы с каждым компонентом изменялся показатель преломления. Транзисторы, в которых работает свет, имеют немало преимуществ перед электронными. К примеру, в фотонных кристаллах значительно меньше тепловые потери. (В сложных кремниевых чипах выделяется столько тепла, что хватило бы поджарить яичницу. Чтобы такие чипы не отказывали, их необходимо непрерывно охлаждать, а это очень дорого.)
Нет ничего удивительного в том, что технология получения фотонных кристаллов должна идеально подойти для метаматериалов, — ведь обе технологии предполагают манипулирование показателем преломления света на наноуровне.
Невидимость через плазмоникуНе желая отставать от соперников, другая группа физиков объявила в середине 2007 г. о создании метаматериала, способного повернуть видимый свет, на базе совершенно иной технологии, получившей название «плазмоника». Физики Анри Лезек, Дженнифер Дионн и Гарри Этуотер из Калифорнийского технологического института объявили о создании метаматериала, обладающего отрицательным показателем преломления для более сложной сине-зеленой области видимого спектра.
Цель плазмоники — таким образом «сжать» свет, чтобы можно было манипулировать объектами в наномасштабе, особенно на поверхности металлов. Причина электропроводности металлов кроется в том, что электроны в атомах металлов слабо связаны с ядром и могут свободно передвигаться вдоль поверхности металлической решетки. Электричество, идущее по проводам у вас дома, представляет собой плавный поток этих слабо связанных электронов по металлической поверхности. Но при определенных условиях, когда луч света сталкивается с металлической поверхностью, электроны могут завибрировать в унисон со светом. При этом на поверхности металла возникают волнообразные движения электронов (эти волны называют плазмонами) в такт с колебаниями электромагнитного поля над металлом. Что еще важнее, эти плазмоны можно «сжать» — при этом они будут иметь ту же частоту, что и первоначальный световой луч (а значит, будут нести ту же информацию), но значительно меньшую длину волны. В принципе затем эти сжатые волны можно втиснуть в нанопроводники. Как и в случае фотонных кристаллов, конечная цель плазмоники — создание компьютерных чипов, в которых работает не электричество, а свет.
Группа из Калифорнийского технологического построила свой метаматериал из двух слоев серебра и азотно-кремниевого изолирующего слоя (толщиной всего 50 нм) между ними. Этот слой действует как «волновод», способный направить плазмонные волны в нужную сторону. Через щель, прорезанную в метаматериале, в устройство проникает лазерный луч; он проходит по волноводу, а затем выходит через вторую щель. Если проанализировать углы, на которые изгибается лазерный луч при прохождении через метаматериал, можно установить, что материал обладает отрицательным показателем преломления для света с данной длиной волны.
Будущее метаматериаловПродвижение в исследовании метаматериалов в будущем будет ускоряться по той простой причине, что уже сейчас интерес к созданию транзисторов, которые работали бы на световом луче вместо электричества, очень велик. Поэтому можно предположить, что исследования в области невидимости смогут «подъехать на попутке», т. е. воспользоваться результатами уже идущих исследований по созданию замены кремниевому чипу при помощи фотонных кристаллов и плазмоники. Уже сегодня в разработку технологии, призванной заменить кремниевые чипы, вкладываются сотни миллионов долларов, а попутно выиграют и исследования в области метаматериалов.
В настоящее время новые серьезные открытия в этой области совершаются каждые несколько месяцев, поэтому не удивительно, что некоторые физики ожидают появления в лаборатории первых образцов реального щита невидимости уже через несколько десятилетий. Так, ученые уверены в том, что сумеют в ближайшие несколько лет создать метаматериалы, способные сделать объект полностью невидимым, по крайней мере в двух измерениях, для видимого света любой конкретной частоты. Чтобы добиться такого эффекта, необходимо будет внедрить в метаматериал крошечные наноимплантаты не правильными рядами, а по сложному рисунку, так чтобы в результате свет плавно огибал скрываемый объект.
Далее ученым придется изобрести и создать метаматериалы, способные изгибать свет в трех измерениях, а не только на плоских двумерных поверхностях. Фотолитография — отработанная технология для получения плоских кремниевых схем; создание же трехмерных метаматериалов потребует как минимум сложной компоновки нескольких плоских схем.
После этого ученым придется решить проблему создания метаматериалов, изгибающих свет не одной частоты, а нескольких — или, скажем, полосы частот. Это, возможно, окажется самой сложной задачей, потому что все разработанные до сих пор крошечные имплантаты отклоняют свет только одной точно заданной частоты. Возможно, ученым придется заняться многослойными метаматериалами, где каждый слой будет действовать на одну конкретную частоту. Пока не ясно, каким будет решение этой проблемы.
Но щит невидимости, даже будучи наконец создан в лаборатории, может оказаться совсем не таким, как нам хочется, скорее всего, это будет тяжелое и неповоротливое устройство. Плащ Гарри Поттера был сшит из тонкой мягкой ткани и при этом делал любого, кто завернется в него, невидимым. Но чтобы такой эффект был возможен, показатель преломления внутри ткани должен постоянно меняться сложным образом в соответствии с колебаниями ткани и движениями человека. Это непрактично. Скорее всего, плащ-невидимка, по крайней мере поначалу, будет представлять собой твердый цилиндр из метаматериала. В этом случае показатель преломления внутри цилиндра можно будет сделать постоянным. (В более продвинутых моделях со временем могут появиться гибкие метаматериалы, способные изгибаться и при этом удерживать свет внутри себя на правильном пути. Тогда тот, кто будет находиться внутри «плаща», получит некоторую свободу движений.)
У щита невидимости есть один недостаток, на который уже неоднократно указывали: тот, кто находится внутри, не сможет выглянуть наружу, не став при этом видимым. Представьте себе Гарри Поттера, у которого видимыми остались только глаза; при этом они как бы плывут по воздуху на соответствующей высоте. Любые отверстия для глаз в плаще-невидимке были бы отчетливо видны снаружи. Если же сделать Гарри Поттера совершенно невидимым, то ему придется сидеть под своим плащом слепо и в полной темноте. (Одним из возможных решений этой проблемы могут стать два маленьких стеклышка перед глазами. Эти стеклышки будут работать как «расщепители луча»; они отщипывали бы и направляли в глаза небольшую часть падающего на них света. При этом большая часть света, попадающего на плащ, шла бы в обход, делая человека внутри невидимым, но некоторая, очень небольшая, его часть отделялась бы и попадала в глаза.)
Бесспорно, препятствия на пути к невидимости очень серьезны, но ученые и инженеры настроены оптимистично и считают, что щит невидимости того или иного рода может быть создан в течение нескольких ближайших десятилетий.
Невидимость и нанотехнологииКак я уже упоминал, ключом к невидимости может стать развитие нанотехнологий, т. е. способности манипулировать структурами атомных (около одной миллиардной части метра в поперечнике) размеров.
Моментом зарождения нанотехнологии называют знаменитую лекцию с ироничным названием «На дне полным-полно места», которую прочитал нобелевский лауреат Ричард Фейнман перед Американским физическим обществом в 1959 г. В этой лекции он рассуждал о том, как могут выглядеть самые крохотные машины в соответствии с известными нам законами физики. Фейнман понимал, что размеры машин будут становиться все меньше и меньше, пока не приблизятся к размерам атома, а затем для создания новых машин можно будет использовать сами атомы. Он сделал вывод о том, что простейшие атомные машины вроде блока, рычага или колеса ничем не противоречат законам физики, но изготовить их будет чрезвычайно трудно.
Много лет нанотехнологии прозябали в забвении — просто потому, что технологии того времени не позволяли манипулировать отдельными атомами. Но в 1981 г. произошел прорыв — физики Герд Бинниг и Генрих Рорер из лаборатории IBM в Цюрихе изобрели сканирующий туннельный микроскоп, который позже принес им Нобелевскую премию по физике.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.