Яков Перельман - Занимательная физика. Книга 2 Страница 11

Тут можно читать бесплатно Яков Перельман - Занимательная физика. Книга 2. Жанр: Научные и научно-популярные книги / Физика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Яков Перельман - Занимательная физика. Книга 2

Яков Перельман - Занимательная физика. Книга 2 краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Яков Перельман - Занимательная физика. Книга 2» бесплатно полную версию:
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием.

Яков Перельман - Занимательная физика. Книга 2 читать онлайн бесплатно

Яков Перельман - Занимательная физика. Книга 2 - читать книгу онлайн бесплатно, автор Яков Перельман

Рисунок 37. «Заколдованный» шар (разрез).

Таково устройство этой карусели, носящей название «заколдованной» или «волшебной» сферы. Что же испытываете вы, находясь на платформе внутри сферы? Когда она вращается, пол под вашими ногами горизонтален, в какой бы точке кривой платформы вы ни находились, — у оси, где пол действительно горизонтален, или у края, где он наклонен на 45°. Глаза ясно видят вогнутость, мускульное же чувство свидетельствует, что под вами ровное место.

Показания обоих чувств противоречат друг другу самым резким образом. Если вы перейдете с одного края платформы на другой, то вам покажется, будто весь огромный шар с легкостью мыльного пузыря перевалился на другой бок под тяжестью вашего тела: ведь во всякой точке вы чувствуете себя, как на горизонтальной плоскости. А положение других людей, стоящих на платформе наклонно, должно представляться вам до крайности необычайным: вам буквально будет казаться, что люди, как мухи, ходят по стенам (рис. 39).

Вода, вылитая на пол заколдованного шара, растеклась бы ровным слоем по его кривой поверхности. Людям казалось бы, что вода здесь стоит перед ними наклонной стеной.

Привычные представления о законах тяжести словно отменяются в этом удивительном шаре, и мы переносимся в сказочный мир чудес…

Подобные ощущения испытывает на поворотах летчик. Так, если он летит со скоростью 200 км в час по кривой с радиусом 500 м, то земля должна казаться[16] ему приподнявшейся и наклоненной на 16°.

Рисунок 38. Истинное положение людей внутри «заколдованною» шара.

Рисунок 39. Положение, которое представляется при этом каждому из двух посетителей.

Рисунок 40. Вращающаяся лаборатория — действительное положение.

Рисунок 41. Кажущееся положение той же вращающейся лаборатории.

В Германии, в городе Геттингене, была сооружена для научных изысканий подобная вращающаяся лаборатория. Это (рис. 40) цилиндрическая комната 3 м в поперечнике, вращающаяся со скоростью до 50 оборотов в секунду. Так как пол комнаты плоский, то при вращении наблюдателю, стоящему у стены, кажется, будто комната откинулась назад, а сам он полулежит на покатой стене (рис. 41).

Жидкий телескоп

Наилучшая форма для зеркала отражательного телескопа — параболическая, т. е. именно та форма, какую сама собою принимает поверхность жидкости во вращающемся сосуде. Конструкторы телескопов затрачивают много хлопотливого труда, чтобы придать зеркалу подобную форму. Изготовление зеркала для телескопа длится целые годы. Американский физик Вуд обошел эти затруднения, устроив жидкое зеркало: вращая ртуть в широком сосуде, он получил идеальную параболическую поверхность, которая могла играть роль зеркала, так как ртуть хорошо отражает лучи света. Телескоп Вуда был установлен в неглубоком колодце.

Недостаток телескопа, однако, тот, что малейший толчок морщит поверхность жидкого зеркала и искажает изображение, а также и тот, что горизонтальное зеркало дает возможность непосредственно рассматривать только те светила, которые находятся в зените.

«Чертова петля»

Быть может, вам знаком головокружительный велосипедный трюк, иногда исполняемый в цирках: велосипедист едет в петле снизу вверх и описывает полный круг, несмотря на то, что по верхней части круга ему приходится ехать вниз головой. На арене устраивают деревянную дорожку в виде петли с одним или несколькими завитками, как изображено на нашем рис. 42. Артист спускается на велосипеде по наклонной части петли, затем быстро взлетает на своем стальном коне вверх, по круговой ее части, совершает полный оборот, буквально вниз головой, и благополучно съезжает на землю[17].

Рисунок 42. «Чертова петля». Внизу слева — схема для расчета.

Этот головоломный велосипедный фокус кажется зрителям верхом акробатического искусства. Озадаченная публика в недоумении спрашивает себя: какая таинственная сила удерживает смельчака вниз головой? Недоверчиво настроенные готовы подозревать здесь ловкий обман, а между тем в трюке нет ничего сверхъестественного. Он всецело объясняется законами механики. Биллиардный шар, пущенный по этой дорожке, выполнил бы то же с не меньшим успехом. В школьных физических кабинетах имеются миниатюрные «чертовы петли».

Знаменитый исполнитель и изобретатель этого трюка, артист «Мефисто», для испытания прочности «чертовой петли» имел тяжелый шар, вес которого равнялся весу артиста вместо с велосипедом. Шар этот пускали по дорожке петли, и если он благополучно пробегал ее, то артист решался проделать петлю сам.

Читатель, конечно, догадывается, что причина странного явления — та же, которая объясняет общеизвестный опыт с вращающимся ведерком (стр. 55). Однако трюк удается не всегда; необходимо в точности рассчитать высоту, с которой велосипедист должен начать свое движение: иначе трюк окончится катастрофой.

Математика в цирке

Я знаю, что ряды «бездушных» формул отпугивают иных любителей физики. Но, отказываясь от знакомства с математической стороной явлений, такие недруги математики лишают себя удовольствия заранее предусматривать ход явления и определять его условия. В данном, например, случае две-три формулы помогут нам в точности определить, при каких условиях возможно успешное выполнение столь удивительного трюка, как пробег в «чертовой петле».

Приступим же к расчетам.

Обозначим буквами те величины, с которыми придется вести расчеты:

буквой h обозначим высоту, с которой скатывается велосипедист;

буквой x обозначим ту часть высоты h, которая возвышается над верхней точкой «петли»; из рис. 42 очевидно, что x = h – АВ;

буквой r обозначим радиус круга петли;

буквой m — общую массу артиста вместе с велосипедом; вес их выразится тогда через mg, причем:

буквой g обозначено ускорение силы земной тяжести;

оно равно, как известно, 9,8 м/с за секунду;

буквой v обозначим скорость велосипеда в тот момент, когда он достигает самой верхней точки круга.

Все эти величины мы можем связать двумя уравнениями. Во-первых, мы знаем из механики, что скорость, которую приобретает велосипед к моменту, когда, катясь по наклонной дорожке, он находится в C на уровне точки B (это положение изображено в нижней части на рис. 42), равна той, какую он имеет в верхней части петли, в точке B. Первая скорость выражается формулой[18]

или v2 = 2gx

Следовательно, и скорость и велосипедиста в точке B равна

, т. е. v2 = 2gx

Далее, для того чтобы велосипедист, достигнув высшей точки кругового пути, не упал вниз, нужно (см. стр. 55–56), чтобы развивающееся при этом центростремительное ускорение было больше, нежели ускорение тяжести, т. е. надо, чтобы

, или v2 > gr

Но мы уже знаем, что v2 = 2gx; следовательно, 2gx > gr или

Итак, мы узнали, что для успешного выполнения этого головоломного фокуса необходимо устроить «чертову петлю» так, чтобы вершина наклонной части пути возвышалась над верхней точкой петли больше чем на ½ ее радиуса. Крутизна наклона роли не играет, — нужно только, чтобы пункт, с которого велосипедист начинает спускаться, возвышался над вершиной петли больше чем на ¼ ее поперечника. Если, например, петля имеет в поперечнике 16 м, то артист должен начать спуск не меньше чем с 20-метровой высоты. Не выполни он этого условия, никакое искусство не поможет ему описать «чертову петлю»: достигнув ее верхней части, он неминуемо упадет.

Расчет этот не учитывает влияния силы трения в велосипеде: считается, что скорости в точке C и точке B одинаковы. Поэтому нельзя слишком удлинять путь и делать очень отлогий спуск. При отлогом спуске в результате действия трения скорость велосипеда по достижении точки B будет меньшей, чем в точке C.

Надо заметить, что при исполнении этого трюка велосипедист едет без цепи, предоставляя машину действию тяжести: ни ускорять, ни замедлять своего движения он не может, да и не должен. Все его искусство в том, чтобы держаться середины деревянной дорожки; при малейшем уклонении артист рискует съехать с дорожки и быть отброшенным в сторону. Скорость движения по кругу весьма велика: при круге с поперечником 16 м ездок совершает оборот в 3 секунды. Это соответствует скорости 60 км в час! Управлять велосипедом при такой скорости, конечно, мудрено; но этого и не надо; можно смело положиться на законы механики. «Сам по себе велосипедный трюк, — читаем мы в брошюре, составленной профессионалом, — при правильном расчете и прочной конструкции аппарата не опасен. Опасность трюка лежит в самом артисте. Если рука артиста дрогнет, если он будет взволнован, потеряет самообладание, если ему неожиданно сделается дурно, то можно ожидать всего».

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.