Ричард Фейнман - 6. Электродинамика Страница 13
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 37
- Добавлено: 2019-08-13 11:17:25
Ричард Фейнман - 6. Электродинамика краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 6. Электродинамика» бесплатно полную версию:Ричард Фейнман - 6. Электродинамика читать онлайн бесплатно
Фиг. 17.5. Повернется ли диск, если ток I прекратится?
После того как ток прервался, поток этот должен уменьшиться до нуля. Поэтому должно возникать индуцированное электрическое поле, которое будет циркулировать по окружностям с центром на оси диска. Заряженные шарики на периферии диска будут все испытывать действие электрического поля, касательного к внешней окружности диска. Эта электрическая сила направлена для всех зарядов одинаково и, следовательно, вызовет у диска вращающий момент. Из этих соображений можно ожидать, что, когда ток в соленоиде исчезнет, диск начнет вращаться. Если нам известны момент инерции диска, ток в соленоиде и заряд шариков, то можно вычислить результирующую угловую
скорость.
Но можно рассуждать и по-другому. Используя закон сохранения момента количества движения, мы могли бы сказать, что момент диска со всеми его пристройками вначале равен нулю, поэтому момент всей системы должен оставаться нулевым. Никакого вращения при остановке тока быть не должно. Какое из доказательств правильно? Повернется ли диск или нет? Мы предлагаем вам подумать над этим вопросом.
Хотелось бы предостеречь вас, что правильный ответ не зависит от всяких несущественных факторов, таких, как несимметричное положение батареи, например. В самом деле, вы можете представить себе, скажем, такой идеальный случай: соленоид сделан из сверхпроводящей проволоки, через которую проходит ток. После того как диск тщательно установлен неподвижным, температуру соленоида медленно начинают повышать. Когда температура проволоки достигнет переходного значения между сверхпроводимостью и нормальной проводимостью, ток в соленоиде обратится в нуль вследствие сопротивления проволоки. Поток, как и раньше, упадет до нуля и вокруг оси возникнет электрическое поле. Мы хотели бы также предостеречь вас, что решение не простое, но это и не обман. Когда вы разберетесь в этом, вы обнаружите важный закон электромагнетизма.
§ 5. Генератор переменного тока
В оставшейся части этой главы мы применим принципы, изложенные в § 1 для анализа ряда явлений, обсуждавшихся в гл. 16. Сначала мы рассмотрим подробно генератор переменного тока. Такой генератор в основном состоит из проволочной катушки, вращающейся в однородном магнитном поле. Тот же самый результат может быть достигнут с помощью неподвижной катушки в магнитном поле, направление которого вращается по способу, описанному в предыдущей главе. Мы рассмотрим лишь первый случай. Пусть имеется круглая катушка из проволоки, которая может вращаться вокруг оси, проходящей вдоль одного из ее диаметров. И пусть эта катушка помещена в магнитное поле, перпендикулярное оси вращения (фиг. 17.6). Представим себе, что оба конца катушки выведены на внешнюю цепь с помощью каких-нибудь скользящих контактов.
Благодаря вращению катушки магнитный поток через нее будет меняться. Поэтому в цепи катушки появится э. д. с. Пусть S —- площадь катушки, а q — угол между магнитным полем и нормалью к плоскости катушки. Тогда поток через катушку равен
BScosq. (17.13)
Если катушка вращается с постоянной угловой скоростью w, то q меняется со временем как wt. Тогда э. д. с. о в катушке равна
или
(17.14)
Если мы выведем провода из генератора на некоторое расстояние от вращающейся катушки, в место, где магнитное поле равно нулю или хотя бы не меняется со временем, то ротор от Е в этой области будет равен нулю, и мы сможем определить электрический потенциал. В самом деле, если ток не уходит из генератора, то разность потенциалов V между двумя проводами будет равна э. д. с. вращающейся катушки, т. е.
Фиг. 17.6. Катушка из проволоки, вращающаяся в однородном магнитном поле,— основная идея генератора переменного тока.
Разность потенциалов в проводах меняется как sinwt. Такая меняющаяся разность потенциалов называется переменным напряжением.
Поскольку между проводами имеется электрическое поле, они должны быть электрически заряжены. Ясно, что э. д. с. генератора выталкивает лишние заряды в провода, пока их электрическое поле не становится достаточно сильным, чтобы в точности уравновесить силу индукции. Если посмотреть на генератор со стороны, то покажется, будто два провода электростатически заряжены до разности потенциалов V, а заряды как бы меняются со временем, создавая переменную разность потенциалов. Есть и еще одно отличие от того, что наблюдается в случае электростатики. Если присоединить генератор к внешней цепи, по которой может проходить ток, мы обнаружим, что э. д. с. не позволяет проводам разряжаться, а продолжает подпитывать их зарядами, когда из них уходит ток, стремясь сохранить на проводах одну и ту же разность потенциалов. Если генератор подключен к цепи, полное сопротивление которой равно R, ток в цепи будет пропорционален э. д. с. генератора и обратно пропорционален R. Поскольку э. д. с. синусоидально изменяется со временем,
то и ток делает то же самое. Возникает переменный ток
Схема такой цепи приведена на фиг. 17.7.
Мы можем также заметить, что э. д. с. определяет количество энергии, поставляемое генератором. Каждый заряд в проводе получает в единицу времени энергию, равную F·v, где F — сила, действующая на заряд, a v — его скорость. Пусть теперь количество движущихся зарядов на единице длины провода равно n; тогда мощность, выделяющаяся в элементе ds провода, равна
Фиг. 17.7. Цепь с генератором переменного тока и сопротивлением.
В проводе скорость v всегда направлена вдоль ds, так что мощность можно переписать в виде
Полная мощность, выделяемая во всей цепи, есть интеграл от этого выражения по всей петле:
(17.15)
Вспомним теперь, что qnv — это ток I и что э. д. с. определяется как интеграл от F/q по всей цепи. Мы получаем
(17.16)
Когда в катушке генератора имеется ток, на нее непременно действуют механические силы. В самом деле, мы знаем, что вращающий момент, действующий на катушку, пропорционален ее магнитному моменту, напряженности магнитного поля В и синусу угла между ними. Магнитный момент есть ток катушки, умноженный на ее площадь. Поэтому вращающий момент равен
(17.17)
Скорость, с которой должна совершаться механическая работа, чтобы поддерживать вращение катушки, есть угловая скорость w, умноженная на вращающий момент силы:
(17.18)
Сравнивая это выражение с (17.14), мы видим, что затраты механической работы в единицу времени, требуемые для вращения катушки против магнитных сил, в точности равны eI — электрической энергии, поставляемой
э. д. с. генератора в единицу времени. Вся механическая энергия, расходуемая в генераторе, появляется в виде электрической энергии в цепи.
В качестве другого примера токов и сил, обусловленных индуцированной э. д. с., проанализируем, что же происходит в установке, показанной на фиг. 17.1. Имеются U-образная проволока и скользящая перемычка, расположенные в однородном магнитном поле, перпендикулярном плоскости параллельных проволок. Теперь предположим, что «дно» U (левая часть фиг. 17.1) сделано из проволоки с большим сопротивлением, тогда как две боковые проволоки сделаны из хорошего проводника вроде меди — в этом случае нам не надо беспокоиться об изменении сопротивления цепи при движении перекладины. Как и раньше,
э. д. с. цепи равна
(17.19)
Ток в цепи пропорционален этой э. д. с. и обратно пропорционален сопротивлению цепи:
(17.20)
Благодаря этому току на перемычку будет действовать магнитная сила, пропорциональная длине перемычки, току в ней и магнитному полю:
(17.21)
Подставляя I из (17.20), получаем для силы
(17.22)
Мы видим, что сила пропорциональна скорости перемещения перемычки. Направление силы, как легко понять, противоположно скорости. Такая «пропорциональная скорости» сила, похожая на силу вязкости, получается всякий раз, когда движущиеся проводники создают индуцированные токи в магнитном поле. Вихревые токи, о которых мы говорили в предыдущей главе, приводят также к силам, действующим на проводники и пропорциональным скорости проводника, хотя такие случаи в общем дают более сложные распределения токов, которые трудно анализировать.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.