Ричард Фейнман - 5. Электричество и магнетизм Страница 17
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 18
- Добавлено: 2019-08-13 11:13:22
Ричард Фейнман - 5. Электричество и магнетизм краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 5. Электричество и магнетизм» бесплатно полную версию:Ричард Фейнман - 5. Электричество и магнетизм читать онлайн бесплатно
Теперь уже легко разглядеть, что и поток из объема, окруженного произвольной поверхностью S, обязан быть равным нулю. Ведь любой объем можно представить себе составленным из таких частей, как на фиг. 4.6. Вся поверхность разделится на пары торцевых участков, а поскольку потоки через каждую из них внутрь и наружу объема попарно уничтожаются, то и суммарный поток через поверхность обратится в нуль. Идея эта иллюстрируется фиг. 4.7. Мы получаем совершенно общий результат: суммарный поток Е через любую поверхность S в поле точечного заряда равен нулю.
Фиг. 4.7. Всякий объем можно представлять себе состоящим из бесконечно малых усеченных конусов.
Поток E сквозь один конец каждого конического сегмента равен и противоположен потоку сквозь другой конец. Общий поток из поверхности S поэтому равен пулю.
Фиг. 4.8. Если заряд находится внутри поверхности, поток наружу не равен нулю.
Будьте, однако, внимательны! Наше доказательство работает только тогда, когда поверхность S не окружает заряд. А что случилось бы, если бы точечный заряд оказался внутри поверхности? Как и раньше, поверхность можно было бы разделить на пары площадок, связанные радиальными прямыми, проходящими через заряд (фиг. 4.8). Потоки через эти участки по той же причине, что и раньте, по-прежнему попарно равны, но только теперь их знаки одинаковы. Поток из поверхности, окружающей заряд, не равен нулю. Тогда чему же он равен? Это можно определить с помощью фокуса. Допустим, что мы «убрали» заряд «изнутри», окружив его маленькой поверхностью S' так, чтобы она лежала целиком внутри первоначальной поверхности 5 (фиг. 4.9). Теперь в объеме, заключенном между двумя поверхностями S и S', никакого заряда нет. Общий поток из этого объема (включая поток через S') равен нулю, в чем можно убедиться при помощи прежних аргументов. Они говорят нам, что поток через S' внутрь объема такой же, как поток через S наружу.
Для S' мы можем выбрать любую, какую угодно форму, поэтому давайте сделаем ее сферой с зарядом в центре (фиг. 4.10). Тогда поток через нее подсчитать легко. Если радиус малой сферы равен r, то значение Е повсюду на ее поверхности равно
и направлено всегда по нормали к поверхности. Весь поток
Фиг. 4.9. Поток через S равен потоку через S'.
Фиг. 4.10. Поток через сферическую поверхность, охватывающую точечный заряд q, равен qle0.
через S' получится, если эту нормальную составляющую Е умножить на площадь поверхности:
Поток через поверхность
т. е. равен числу, не зависящему от радиуса сферы! Значит, и поток наружу через S тоже равен q/e0; это значение не зависит от формы S до тех пор, пока заряд q находится внутри. Наши выводы мы можем записать так:
(4.32)
Давайте вернемся к нашей аналогии с «дробинками» и посмотрим, есть ли в ней смысл. Наша теорема утверждает, что суммарный поток дробинок через поверхность равен нулю, если поверхность не окружает собой ружье, стреляющее дробью. А если ружье окружено поверхностью, то какого бы размера или формы она ни была, количество проходящих через нее дробинок всегда одно и то же — оно дается скоростью, с которой дробинки вылетают из ружья. Все это выглядит вполне разумно для сохраняющихся дробинок. Но сообщает ли эта модель нам хоть что-то сверх того, что получается просто из уравнения (4.32)? Никому не удалось добиться того, чтобы «дробинки» произвели на свет что-нибудь сверх этого закона. Кроме него, они порождают только ошибки. Поэтому-то мы сегодня предпочитаем чисто абстрактное представление об электромагнитном поле.
§ 6. Закон Гаусса; дивергенция поля Е
Наш изящный результат — уравнение (4.32) — был доказан для отдельного точечного заряда. А теперь допустим, что имеются два заряда: заряд ql—в одной точке и заряд (q2 — в другой. Задача выглядит уже потруднее. Теперь электрическое поле, нормальную составляющую которого мы интегрируем, это уже поле, созданное обоими зарядами. Иначе говоря, если e1—то электрическое поле, которое создал бы один только заряд q1 ,a E2 — электрическое поле, создаваемое одним зарядом q2, то суммарное электрическое поле равно Е=Е1 + Е2. Поток через произвольную замкнутую поверхность S равен
(4.33)
Поток при наличии двух зарядов — это поток, вызванный одним зарядом, плюс поток, вызванный другим. Если оба находятся снаружи S, то поток сквозь S равен нулю. Если qlнаходится внутри S, a q2 — снаружи, то первый интеграл даст q1/e0, а второй — нуль. Если поверхность окружает оба заряда, то каждый внесет вклад в интеграл и поток окажется равным (q1+q2)/e0. Общее правило очевидно: суммарный поток из замкнутой поверхности равен суммарному заряду внутри нее, деленному на e0.
Этот результат представляет собой важный общий закон электростатического поля, и называется он теоремой Гаусса,
Закон Гаусса:
(4.34)
или
(4.35)
где
(4.36)
Из нашего вывода видно, что закон Гаусса вытекает из того факта, что показатель степени в законе Кулона в точности равен двум. Поле с законом 1/r3, да и любое поле 1/rn с n№2, не привело бы к закону Гаусса. Значит, закон Гаусса как раз выражает (только в другой форме) закон сил Кулона, действующих между двумя зарядами. Действительно, отправляясь от закона Гаусса, можно вывести закон Кулона. Оба они совершенно равноценны до того момента, пока силы между зарядами действуют радиально.
Теперь мы хотим записать закон Гаусса на языке производных. Чтобы это сделать, применим его к поверхности бесконечно малого куба. В гл. 3 мы показали, что поток Е из такого куба равен дивергенции С·Е, помноженной на объем dV куба. Заряд внутри dV по определению r равен rdV, так что закон Гаусса дает
или
(4.38)
Дифференциальная форма закона Гаусса — это первое из наших фундаментальных уравнений поля в электростатике, уравнение (4.5). Мы теперь показали, что два уравнения электростатики (4.5) и (4.6) эквивалентны закону силы Кулона. Разберем один пример применения закона Гаусса (другие примеры будут рассмотрены позже).
§ 7. Поле заряженного шара
Одной из самых трудных задач, которую пришлось нам решать, когда мы изучали теорию гравитационного притяжения, было доказать, что сила, создаваемая твердым шаром на его поверхности, такая же, как если бы все вещество шара было сконцентрировано в его центре. Много лет Ньютон не решался обнародовать свою теорию тяготения, так как не был уверен в правильности этой теоремы. Мы доказали ее в вып. 1, гл. 13, взяв интеграл для потенциала и вычислив силу тяготения по градиенту. Теперь эту теорему мы можем доказать очень просто. Но на этот раз мы докажем не совсем ее, а сходную теорему для однородно заряженного электричеством шара. (Поскольку законы электростатики и тяготения совпадают, то то же доказательство может быть проведено и для поля тяготения.)
Зададим вопрос: каково электрическое поле Е в точке Р где-то снаружи сферы, наполненной однородно распределенным зарядом? Так как здесь нет «выделенного» направления, то законно допустить, что Е всюду направлено прямо от центра сферы. Рассмотрим воображаемую сферическую поверхность, концентрическую со сферой зарядов и проходящую через точку Р (фиг. 4.11). Для этой сферы поток наружу равен
Фиг. 4.11. Применение закона Гаусса для определения поля однородно заряженного шара.
1 — распределение заряда r; 2 — гауссово поверхность S.
Закон Гаусса утверждает, что этот поток равен суммарному заряду сферы Q (деленному на e0):
или
(4.39)
а это как раз та формула, которая получилась бы для точечного заряда Q. Мы решили проблему Ньютона проще, без интеграла. Конечно, это кажущаяся простота; вам пришлось затратить какое-то время на то, чтобы разобраться в законе Гаусса, и вы можете думать, что на самом деле время нисколько не сэкономлено. Но когда вам придется часто применять эту теорему, то она практически окупится. Все дело в привычке.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.