Ричард Фейнман - 6. Электродинамика Страница 19

Тут можно читать бесплатно Ричард Фейнман - 6. Электродинамика. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ричард Фейнман - 6. Электродинамика

Ричард Фейнман - 6. Электродинамика краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 6. Электродинамика» бесплатно полную версию:

Ричард Фейнман - 6. Электродинамика читать онлайн бесплатно

Ричард Фейнман - 6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман

(18.10)

Таким образом, если отношение Е к В равно v, то рассматри­ваемые нами поля будут удовлетворять уравнению Фарадея. Но это не единственное уравнение; у нас есть еще одно, связывающее Е и В:

(18.11)

Чтобы применить это уравнение, посмотрим на вид сверху, изображенный на фиг. 18.5. Мы уже видели, что это уравнение дает нам значение В вблизи заряженного листа. Кроме того, для любой петли, нарисованной вне листа, но позади волнового фронта, нет ни ротора В, ни j или меняющегося поля Е, так что уравнение там справедливо. А теперь посмотрим, что происходит в петле Г1, которая пересекает волновой фронт, как показано на фиг. 18.5. Здесь нет токов, поэтому уравнение (18.11) можно записать в интегральной форме так:

(18.12)

Контурный интеграл от В есть просто произведение В на L. Скорость изменения потока Е возникает только благодаря продвигающемуся волновому фронту. Область внутри Г1, где Е не равно нулю, увеличивается со скоростью vL. Правая сто­рона (18.12) тогда равна vLE. Уравнение это приобретает вид

(18.13)

Мы имеем решение, когда поля В и Е постоянны за фрон­том, причем оба направлены под прямыми углами к направле­нию, в котором движется фронт, и под прямыми углами друг к другу. Уравнения Максвелла определяют отношение Е к В. Из (18.10) и (18.13) получаем

Но одну минутку! Мы нашли два разных выражения для отно­шения Е/В. Может ли такое поле, как мы описываем, дей­ствительно существовать? Имеется лишь одна скорость v, для которой оба уравнения могут быть справедливы, а именно v = с. Волновой фронт должен передвигаться со скоростью с. Вот пример, когда электрическое возмущение от тока распро­страняется с определенной конечной скоростью с.

А теперь спросим, что произойдет, если мы внезапно оста­новим заряженный лист, после того как он двигался в течение короткого времени Т? Увидеть, что случится, можно с помощью принципа суперпозиции. У нас был ток, равный нулю, а затем его внезапно включали. Мы знаем решение для этого случая. Теперь мы собираемся добавить другой ряд полей. Мы берем другой заряженный лист и внезапно начинаем его двигать в противоположном направлении с той же скоростью, только спустя время Т после начала движения первого листа. Полный ток от двух листов вместе сначала равен нулю, потом он вклю­чается в течение времени Т, затем выключается снова, потому что оба тока погашаются. Так мы получаем прямоугольный «импульс» тока.

Новый отрицательный ток создает такие же поля, как и по­ложительный, но с обратными знаками и, разумеется, с запаздыванием во времени Т. Волновой фронт по-прежнему движется со скоростью с. В момент времени t он достигает расстояния x=±c(t- Т) (см. фиг. 18.4, б). Итак, мы имеем два «куска» поля, перемещающихся со скоростью с (см. фиг. 18.4, а и б). Соединенные поля будут такими, как показано на фиг. 18.4, в. Для х>сt поля равны нулю, между х=с(t-Т) и x=ct они постоянны (со значениями, которые мы нашли выше), и для x<c(t-Т) они снова равны нулю.

Короче говоря, мы получаем маленький кусочек поля тол­щиной сТ, который покинул заряженный лист и передвигается через все пространство сам по себе. Поля «оторвались»; они распространяются свободно в пространстве и больше не связаны каким-то образом с источником. Куколка превратилась в бабочку!

Как же эти совокупности электрического и магнитного полей могут сохранять сами себя? Ответ: За счет сочетания эффектов из закона Фарадея СXE=-dВ/dt и нового члена, добавлен­ного Максвеллом c2СX B=dE/dt. Они не могут не сохранять себя. Предположим, что магнитное поле исчезло бы. Тогда появилось бы меняющееся магнитное поле, которое создавало бы электрическое поле. Если бы это электрическое поле попы­талось исчезнуть, то изменяющееся электрическое поле создало бы магнитное поле снова. Следовательно, за счет непрерывного взаимодействия — перекачивания туда и обратно от одного поля к другому — они должны сохраняться вечно. Они не могут исчезнуть. Они сохраняются, вовлеченные в общий танец — одно поле создает другое, а второе создает первое,— распространяясь все дальше и дальше в пространстве.

§ 5. Скорость света

У нас есть волна, которая уходит от материального источ­ника и движется со скоростью с (это скорость света). Вернемся немного назад. Исторически не было известно, что коэффициент c в уравнениях Максвелла тот же, что и скорость распростра­нения света. Это была просто константа в уравнениях. Мы на­звали ее с c самого начала, так как знали, что в конце концов должно получиться. Мы не думаем, что было бы разумнее сна­чала заставить вас выучить формулы с разными константами, а затем вернуться обратно и подставить с повсюду, где оно должно стоять. С точки зрения электричества и магнетизма, однако, мы прямо начинаем с двух констант e0 и с2, которые появляются в уравнениях электростатики и магнитостатики:

(18.14)

и

(18.15)

Если взять любое произвольное определение единицы заряда, можно экспериментально определить постоянную e0, входящую в уравнение (18.14), скажем, измеряя силу между двумя не­подвижными единичными зарядами по закону Кулона. Мы должны также определить экспериментально постоянную e0с2, которая появляется в уравнении (18.15), что можно сделать, скажем, измерив силу между двумя единичными токами. (Еди­ничный ток означает единичный заряд в секунду.) Отношение этих двух экспериментальных постоянных есть с2 — как раз другая «электромагнитная постоянная».

Заметим теперь, что постоянная с2 получается одна и та же независимо от того, какова выбранная наша единица заряда. Если мы выберем «заряд» в два раза больше (скажем, удвоен­ный заряд протона), то в нашей «единице» заряда e0 должна уменьшиться в четыре раза. Когда мы пропускаем два таких «единичных» тока по двум проводам, в каждом проводе будет в два раза больше «зарядов» в секунду, так что силы между двумя проводами будут в четыре раза больше. Постоянная e0с2 должна уменьшиться в четыре раза. Но отношение e0с2/e0 не меняется.

Следовательно, непосредственно из экспериментов с заряда­ми и токами мы находим число с2, которое оказывается равным квадрату скорости распространения электромагнитных воз­буждений. Из статических измерений (измеряя силы между двумя единичными зарядами и между двумя единичными токами) мы находим, что с=3,00·108 м/сек. Когда Максвелл впервые проделал это вычисление со своими уравнениями, он сказал, что совокупность электрического и магнитного полей будет распространяться с этой скоростью. Он отметил также таин­ственное совпадение — эта скорость была равна скорости света. «Мы едва ли можем избежать заключения,— сказал Максвелл,— что свет — это поперечное волнообразное движение той же самой среды, которая вызывает электрические и магнит­ные явления».

Так Максвелл совершил одно из великих обобщений физики! До него был свет, было электричество и был магнетизм. Причем два последних явления были объединены экспериментальными работами Фарадея, Эрстеда и Ампера. Потом внезапно свет не стал уже больше «чем-то еще», а был электричеством и магнетизмом в новой форме, небольшими кусками электри­ческого и магнитного полей, которые распространяются в про­странстве самостоятельно.

Мы обращали ваше внимание на некоторые черты этого осо­бого решения, которые, однако, справедливы для любой элек­тромагнитной волны: магнитное поле перпендикулярно направ­лению движения фронта волны; электрическое поле также перпендикулярно направлению движения фронта волны; и два вектора Е и В перпендикулярны друг другу. Далее, величина электрического поля Е равна произведению с на величину маг­нитного поля В. Эти три факта — что оба поля поперечны на­правлению распространения, что В перпендикулярно Е и что Е=сВ — верны вообще для любой электромагнитной волны. Наш частный случай — хороший пример, он показывает все основные свойства электромагнитных волн.

§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение

Теперь стоило бы заняться немного математикой; мы запи­шем уравнения Максвелла в более простой форме. Вы, пожалуй, сочтете, что мы усложняем их, но если вы наберетесь терпения, то внезапно обнаружите их большую простоту. Хотя вы уже вполне привыкли к каждому из уравнений Максвелла, имеется все же много частей, которые стоит соединить воедино. Вот как раз этим мы и займемся.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.