А. Березовчук - Физическая химия: конспект лекций Страница 20

Тут можно читать бесплатно А. Березовчук - Физическая химия: конспект лекций. Жанр: Научные и научно-популярные книги / Физика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
А. Березовчук - Физическая химия: конспект лекций

А. Березовчук - Физическая химия: конспект лекций краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «А. Березовчук - Физическая химия: конспект лекций» бесплатно полную версию:
Данное учебное пособие предназначено для студентов химических факультетов высших учебных заведений педагогического и технического направления. Изложены основные концепции и процессы, составляющие современную физическую химию. Материал соответствует государственному стандарту. Пособие рекомендовано в помощь студентам при подготовке к экзаменам.

А. Березовчук - Физическая химия: конспект лекций читать онлайн бесплатно

А. Березовчук - Физическая химия: конспект лекций - читать книгу онлайн бесплатно, автор А. Березовчук

ECl–/AgCl, Ag = 0,2224 – 0,0592 lg a Cl–.

9. Электроды сравнения

Электроды сравнения – электроды, используемые при измерении электродных потенциалов в паре с используемым электродом. Электродный потенциал – скачок потенциала на границе металл-раствор. Он определяется: природой металла, раствора, концентрацией, температурой. Для сравнения электродных потенциалов нужны стандартные условия: t = 25 °С = 298 К; Р – 1 атм, одномолярный раствор. Абсолютное значение электродного потенциала измерить нельзя. Поэтому измеряют разность потенциалов между данным электродом и электродом сравнения, потенциал которого принимают равным нулю. Часто используют водородный электрод, изготовленный из губчатой платины с сильно развитой поверхностью (платиновая чернь), опускают в раствор H2SO4 – серной кислоты с активностью ионов водорода, равной единице. При этом через раствор пропускается газообразный водород под давлением, который затем адсорбируется платиной. Относительно потенциала водородного электрода все металлы располагают в ряд напряжений, установленный электрически Н. Н. Бекетовым, взаимному вытеснению металлов в зависимости от величины и знака стандартного электродного потенциала. Существуют и другие электроды сравнения: каломельный, хлорсеребряный и другие, в зависимости от различных методов. Конструктивное оформление электрода сравнения разнообразно. Например, для полярографического метода электроды сравнения должны иметь большую поверхность во избежание поляризации их при работе под током.

ЛЕКЦИЯ № 13. Электрохимическая кинетика

1. Основные кинетические характеристики и методы их расчетов

i0 – ток обмена – кинетическая характеристика равновесия между электродом и раствором при равновесном значении электродного потенциала. Токи обмена относят к 1 см2 поверхности раздела электрод-раствор.

α– коэффициент переноса заряда – характеризует степень влияния электрического поля электрода на энергию активации электрохимической стадии и определяет симметрию катодного и анодного процессов, зависит от формы потенциальных кривых.

α≈ 0,5.

При одном и том же отклонении потенциала электрода от равновесного значения скорости реакции результативная плотность тока будет тем больше, чем выше i0. Ток обмена i0 зависит от природы электрохимической реакции, материала электрода и состава раствора.

Константа скорости – скорость реакции при единичных концентрациях.

Скорость прямой реакции:

где k – константа, зависящая от свойств системы и способа выражения скорости процесса;

Cox – концентрация реагирующих частиц;

Ea – энергия активации разряда в отсутствии скачка потенциала между металлом и раствором.

Скорость обратной реакции

где CRed – концентрация частиц Red (восстановление продуктов);

Еa– энергия активации реакции ионизации при скачке потенциала между металлом и раствором, равным нулю.

Энергия активации электрохимического процесса зависит от величины электродного потенциала, природы ее непосредственных участников и электрода.

Энергия активации при постоянном перенапряжении η – эффективная энергия активации. Если энергия активации не зависит от перенапряжения, то ее появление замедляет диффузию.

Метод расчета величин αи i0 основан на явлении редоксикинетического эффекта заключается в том, что при наложении переменного тока на электрод его потенциал смещается в ту или иную сторону на некоторую величину от первоначального значения. Это смещение – редоксикинетический потенциал ψ. Связь редоксикинетического потенциала ψ с кинетическими параметрами а и i0 такая: если наложить переменный ток на электрод, находящийся в равновесии с соответствующими ионами в растворе, то за время катодного полупериода он окажется заполяризованным катодно, причем зависимость между ηи iпри условии замедленности стадии разряда будет передаваться уравнением

При достаточном удалении от состояния равновесия

Из последнего выражения следует, если α= 0,5, то ψ = 0, чем сильнее αотклонена от 0,5, тем больше ψ.

Энергия активизации – энергия, представляющая собой минимальную энергию, достаточную для осуществления акта химической реакции.

2. Уравнения электрохимической кинетики, пределы их применимости

1-й закон Фарадея устанавливает прямую пропорциональность между количеством прошедшего через систему электричества и количеством прореагировавшего вещества.

Δm = kэJt = kэq, (1)

где Δm – количество прореагировавшего вещества;

k – коэффициент пропорциональности;

q – количество электричества, равное произведению силы тока I на время t.

Если q = Jt = 1, то Δm = – количество вещества, прореагировавшего в результате протекания единицы количества электричества.

– электрохимический эквивалент.

2-й закон Фарадея устанавливает связь между количеством прореагировавшего вещества при пропускании данного количества электричества и его природой.

По этому закону, при постоянном количестве прошедшего электричества массы прореагировавших веществ относятся между собой, как их химические эквиваленты А:

Если количество электричества равно F, числу Фарадея, то Δm1 = Fkэ1 = A1, Fkэ при q = 1F, то

Уравнение (3) позволяет объединить оба закона Фарадея в виде одного общего закона, по которому количество электричества (1F = 96500k) всегда изменяет электрохимически массу любого вещества, независимо от его природы.

Законы Фарадея – основные законы электролиза, согласно которых, количество вещества, выделившегося при электролизе, прямо пропорционально его химическому эквиваленту и количеству прошедшего электричества.

Уравнение Нернста

Е0 – равновесный стандартный потенциал.

где С0 – стандартная концентрация раствора;

С – любая концентрация в нестандартных условиях, С = С0 x Е = Е0 , т. е. в стандартных условиях С = C0 = 1 моль.

Для окислительных веществ

1-й закон Фика:

где dc/dx – градиент концентрации;

s – площадь, через которую происходит диффузия.

Δ – коэффициент диффузии cм2 x c-1, показывает число частиц, продиффундировавших за 1 с через поперечное сечение раствора площадью 1 см2, dt – время диффузии, dm – число продиффундировавших частиц.

где Тк – коэффициент внутреннего трения;

D – коэффициент диффузии.

Первый закон Фика относится к процессу стационарной диффузии, сходен с закономерностями переноса тепла из электричества.

Если диффузионный поток не изменяется с течением времени, это называется стационарной диффузией.

Диффузия – самопроизвольно протекающий в системе процесс выравнивания концентрации молекул, ионов, частиц под влиянием теплового хаотического движения.

Основное уравнение электрохимической кинетики

ik = ia = i0,

где i0 – ток обмена,

(окислительно-восстановительные реакции).

При катодной поляризации на электроде через систему протекает ik преимущественно, если поляризация не слишком велика, то суммарная скорость процесса равна:

i = ik – ia,

для реакции (1) катодные и анодные токи будут равны:

где Z – количество электронов, участвующих в реакции;

F – число Фарадея;

к – const скорости;

Сox, Cred – концентрация окислительной и восстановленной форм реагентов;

ΔGK – энергия активации катодного процесса;

ΔGA – энергия активации анодного процесса.

Энергия активации зависит от величины накладываемого потенциала, в то же самое время эта энергия распределяется между прямой и обратной реакцией в соответствии с коэффициентом переноса – а, т. е.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.