Ричард Фейнман - 2. Пространство. Время. Движение Страница 21

Тут можно читать бесплатно Ричард Фейнман - 2. Пространство. Время. Движение. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ричард Фейнман - 2. Пространство. Время. Движение

Ричард Фейнман - 2. Пространство. Время. Движение краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 2. Пространство. Время. Движение» бесплатно полную версию:

Ричард Фейнман - 2. Пространство. Время. Движение читать онлайн бесплатно

Ричард Фейнман - 2. Пространство. Время. Движение - читать книгу онлайн бесплатно, автор Ричард Фейнман

Фиг. 19.4. Три последовательных положения движущейся по радиусу точки вращающегося столика.

Из-за вращения карусели масса, как мы видим, движется не по прямой линии, а по некоторому кривому пути, касающемуся диаметра в точке r=0. Но для того чтобы она двигалась по кривому пути, долж­на действовать ускоряющая сила. Это и есть кориолисова сила.

Однако с кориолисовой силой мы встречаемся не только в подобных ситуациях. Можно показать, что если предмет дви­жется с постоянной скоростью по краю диска, то на него тоже действует кориолисова сила. Почему? Мик видит предмет дви­жущимся со скоростью vм, а Джо видит его движущимся по окружности со скоростью vд=vм+wr, поскольку предмет вдо­бавок переносится каруселью. Как мы уже знаем, действующая в этом случае сила будет, в сущности, полностью центробежной силой скорости vд, равной тv2Д/r. Но, с точки зрения Мика, она должна состоять из трех частей. Все это можно записать в сле­дующем виде:

Итак, Fr это сила, которую измеряет Мик. Попытаемся по­нять, откуда что берется. Может ли Мик признать первый член? «Конечно,— сказал бы он,— даже если бы я не вращался, то та­кая центробежная сила должна возникнуть, если побежать по кругу со скоростью vм». Итак, это просто центробежная сила, появления которой Мик ожидает и которая не имеет ничего общего с вращением карусели. Вдобавок Мик думает, что долж­на быть еще одна центробежная сила, действующая даже на неподвижные предметы на его карусели. Это дает третий член. Однако в дополнение к ним существует еще один член — второй, который опять равен 2 mwvм. Раньше, при радиальной ско­рости, кориолисова сила fk была тангенциальна. Теперь же, при тангенциальной скорости, она радиальна. В самом деле, одно выражение отличается от другого только знаком. Сила всег­да имеет одно и то же направление по отношению к скорости независимо от того, куда направлена скорость. Она действует под прямым углом к скорости и равна по величине 2mwv.

Глава 20

ВРАЩЕНИЕ В ПРОСТРАНСТВЕ

§ 1. Моменты сил в трехмерном пространстве

§ 2. Уравнения вращения в векторном виде

§ 3. Гироскоп

§ 4. Момент количества движения твердого тел

§ 1. Моменты сил в трехмерном пространстве

В этой главе мы рассмотрим одно из наи­более замечательных и забавных следствий за­конов механики поведение крутящегося колеса. Для этого нам прежде всего нужно расширить математическое описание вращения, понятие момента количества движения, момента силы и т. д. на трехмерное пространство. Од­нако мы не будем использовать эти уравнения во всей их общности и изучать все следствия, ибо это займет многие годы, а нас ждут другие разделы, к которым мы вскоре должны перейти. В вводном курсе можно остановиться только на основных законах и их приложениях к весьма ограниченному числу особенно интересных слу­чаев.

Прежде всего хочу отметить, что для враще­ния в трех измерениях твердого тела или како­го-то иного объекта остается верным все, что мы получили для двух измерений. Иначе говоря, xFy-yFxтак и остается моментом силы «в пло­скости ху», или моментом силы «относительно оси z». Остается справедливым также, что этот момент силы равен скорости изменения вели­чины хрy-урх; если вы вспомните вывод урав­нения (18.15) из законов Ньютона, то увидите, что фактически мы не использовали того обсто­ятельства, что движение плоское, и просто диф­ференцировали величину хру-урхи получали xFy-yFx, так что эта теорема остается верной. Величину хру-урхмы называли моментом ко­личества движения в плоскости ху, или момен­том количества движения относительно оси z. Кроме плоскости ху, можно использовать дру­гие пары осей и получить другие уравнения. Возьмем, например, плоскость yz. Уже из симметрии ясно, что если мы просто подставим у вместо х, a z вместо у, то для момента силы получим выражение yFz-zFyи ypz-zpyбудет угловым моментом в этой плоскости. Разумеется, можно еще взять и плоскость zx и получить для нее

zFx-xFz=d/dt(zpx-xpz).

Совершенно ясно, что для движения одной частицы мы получаем и три уравнения для трех плоскостей. Более того, если мы складывали такие величины, как хру—урх, для многих частиц и называли это полным угловым моментом, то теперь у нас есть три сорта подобных выражений для трех плос­костей: ху, yz и zx, а сделав то же самое с моментами сил, мы можем также говорить и о полных моментах сил в этих плос­костях. Таким образом, появляются законы о том, что внешний момент сил в некоторой плоскости равен скорости изменения углового момента в той же плоскости. Это просто обобщение того, что писалось для двух измерений.

Однако теперь можно сказать: «Но ведь есть еще и другие плоскости. Разве нельзя в конце концов взять плоскость под каким-то углом и вычислять действующие в ней моменты сил. Для каждого такого случая нужно писать другие системы уравнений, так что в результате их наберется масса!» Здесь следует отметить очень интересное обстоятельство. Оказыва­ется, что если мы в комбинации x'Fy'-y'Fx'для «косой» плос­кости выразим величины x', Fy'и т. д. через их компоненты, то результат можно записать в виде некоторой комбинации трех моментов в плоскостях ху, yz и zx. В этом нет ничего но­вого. Другими словами, если нам известны три момента сил в плоскостях ху, yz и zx, то момент сил в любой другой плоскости, как и угловой момент, может быть записан в виде их комби­нации: скажем, 6% одного, 92% другого и т. д. Этим свойством мы сейчас и займемся.

Пусть Джо для своих координатных осей х, у, z определял все моменты сил и все угловые моменты во всех плоскостях. Однако Мик направил свои оси х', у', z' по-другому. Чтобы немного облегчить задачу, предположим, что повернуты только оси x и y. Мик выбрал другие оси х' и у', а его ось z осталась той же самой. Это означает, что плоскости yz и zx у него новые, а поэтому моменты сил и угловые моменты у него тоже окажутся новыми. Например, его момент сил в плоскости х'у' окажется равным

x'Fy'-y'Fx' и т. д. Следующая задача — найти связь между новыми и старыми моментами сил. Ее вполне можно ре­шить, установив связь одного набора осей с другим. «Да это же напоминает то, что мы делали с векторами»,— скажете вы. Действительно, я собираюсь делать в точности то же самое. «А не вектор ли он, этот момент сил?» спросите вы. Действительно, он — вектор, однако этого нельзя сказать просто так, без всякого математического анализа. Так что следующим этапом должен быть анализ. Однако мы не будем подробно обсуждать каждый шаг, а только покажем, как это все работает. Моменты сил, вычисленные Джо, равны

В этом месте мы сделаем отступление и заметим, что в подоб­ных случаях, если оси координат выбраны неправильно, для некоторых величин получается неверный знак. Почему бы не написать tyz=zFy-yFz? Этот вопрос связан с тем обстоятель­ством, что система координат может быть либо «левая», либо «правая». Однако выбрав (произвольно) знак, скажем, у txy, можно всегда определить правильное выражение для остальных двух величин путем замены по какой-либо из двух схем:

Теперь Мик подсчитывает моменты сил в своей системе.

Пусть одна система координат повернута на угол q по отноше­нию к другой, так что ось z осталась той же самой. (Угол q ничего не имеет общего с вращением объекта или с чем-то про­исходящим внутри системы координат. Это просто связь меж­ду осями, используемыми одним человеком, и осями, исполь­зуемыми другим. Мы предполагаем, что он остается постоян­ным.) При этом координаты в двух системах связаны так:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.