Дэйв Голдберг - Вселенная. Руководство по эксплуатации Страница 28

Тут можно читать бесплатно Дэйв Голдберг - Вселенная. Руководство по эксплуатации. Жанр: Научные и научно-популярные книги / Физика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Дэйв Голдберг - Вселенная. Руководство по эксплуатации

Дэйв Голдберг - Вселенная. Руководство по эксплуатации краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Дэйв Голдберг - Вселенная. Руководство по эксплуатации» бесплатно полную версию:
Книга «Вселенная. Руководство по эксплуатации» — идеальный путеводитель по самым важным — и, конечно, самым упоительным — вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?». Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Г. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина! Настоящий подарок для всех, кого интересует современная наука, — от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук!

Дэйв Голдберг - Вселенная. Руководство по эксплуатации читать онлайн бесплатно

Дэйв Голдберг - Вселенная. Руководство по эксплуатации - читать книгу онлайн бесплатно, автор Дэйв Голдберг

Теперь представьте себе, что эта планета еще и крайне компактна. В таком случае свет потеряет столько энергии, что обратится вспять и вернется на поверхность планеты. Или не вернется? Если планета и правда такая плотная, что свет не может с нее выбраться, то он, прежде всего, и вверх не поднимется. Это вроде малыша, который пытается идти вверх по эскалатору, едущему вниз. Ах, лапочка, он так старается, но неминуемо спускается все ниже и ниже. Вообще-то у такой планеты и поверхности толком не будет. Она тоже схлопнется под воздействием чудовищной гравитации, и вся планета тоже схлопнется в одну точку — в сингулярность.

Создать такую сингулярность — дело трудное. Чтобы сгенерировать подобную гравитацию с помощью нашей Земли, мы должны будем сжать ее в шарик в 7,5 миллиметра в диаметре. Даже солнце, которое массивнее Земли в триста тысяч раз, придется сжать до радиуса 3,2 километра. Это меньше Манхэттена.

Такова общая идея черной дыры — это настолько компактная система, что от нее не может убежать даже свет. Горизонт событий, точка, откуда нет возврата, — это невидимая граница между отчаянным притяжением очень сильной гравитации и билетом в один конец к центру массивного чудища. Стоит чему-нибудь — звезде, одинокому носку, ключам от машины, частице — пересечь горизонт событий, и его затянет в черную дыру. Этой алчной пасти не избежать даже фотону. Раз уж свет, оказавшись за горизонтом событий, не может оттуда вырваться, больше ничто не в силах. Не забывайте: скорость света — это вселенский предел скорости.

Черная дыра — необходимейшее орудие в арсенале чокнутого профессора. Она пригодится для самых разных целей — в ней хорошо топить надоедливых протагонистов и прятать результаты неудавшихся биологических экспериментов. Но больше всего любому по-настоящему чокнутому профессору хочется найти применение тому, что гравитация вблизи черной дыры сворачивает время, и создать на этой основе машину времени.

Прежде чем мы разберемся, что такое черная дыра и с чем ее едят и можно ли (или нельзя) сделать из нее машину времени, давайте «вспомним» некоторые черты фотонов — частиц, которые, как мы обсудили в главе 2, составляют свет.

Как вы помните, если вы видели один фотон, значит, видели все. По сути дела, разница между ними только в том, что одни фотоны более энергичны, другие менее. Есть много свойств света, которые на первый взгляд кажутся разными, но на самом деле это разные проявления одного и того же. В случае света количество энергии фотона коррелирует с цветом светового луча. Эта взаимозависимость энергии и цвета простирается далеко за пределы видимого спектра.

В главе 2 мы также поговорили о том, что свет ведет себя как кусочки волн и чем выше энергии, тем короче длина волны. Самое главное в этом (в рамках настоящей дискуссии) — то, что, поскольку фотоны представляют собой маленькие волны, мы можем засечь время, которое требуется, чтобы два последовательных фронта волны прошли фиксированную точку, — этот интервал называется периодом волны. Помните, в главе 1 мы говорили о цезиевых часах? Теперь мы готовы рассказать вам, что мы на самом деле имели в виду. Если взять фотон, который испустил атом цезия, и измерить время между гребнями волны, то он будет вести себя как часы — одни из точнейших часов во Вселенной.

При большой длине волны (и низкой энергии) гребни движутся относительно медленно. Например, радиоволна колеблется примерно 100 раз за каждую миллионную долю секунды — но для субатомных частиц это вечность. У более коротких волн период тоже короче. Зная лишь эти несколько фактов и вооружившись нашим лазерным мысленным экспериментом, мы будем практически готовы самостоятельно открыть одно из великих достижений Эйнштейна — общую теорию относительности.

II. Реальны ли черные дыры или физики просто выдумали их от скуки?

Общая теория относительности рассказывает нам, как на самом деле устроена гравитация, и точно описывает мерзкое нутро предметов наподобие черных дыр. В числе прочего мы увидим, что время и пространство отнюдь не так абсолютны, как мы думали, и что возле черных дыр происходят очень странные вещи.

Представьте себе, что доктор Дейв и Робо-Джефф берут свой вечный двигатель на планету с очень сильной гравитацией. Они снова направляют лазерный луч на вершину утеса. К тому времени, как лазер достигнет вершины, он утратит некоторое количество энергии и станет немного краснее. Из-за растяжения времени период фотона, измеренный на вершине утеса, будет длиннее, чем у подножия.

Это же фотонная версия наших цезиевых часов! Давайте же найдем им применение. Скажем, доктор Дейв шлет фотонный луч на вершину утеса с периодом в одну секунду (то есть луч этот состоит из радиоволн с совсем низкой энергией). Если гравитация планеты достаточно сильна, Робо-Джефф на вершине утеса будет видеть вспышки с интервалом в две секунды.

Тут все сильно осложняется. Если мы поместим наручные часы доктора Дейва у подножия утеса, то заметим, что за 50 секунд прошло 50 гребней волн. Однако Робо-Джефф на вершине утеса увидит за то же время только 25 гребней.

Как же так?

Единственное объяснение — что для доктора Дейва время течет медленнее, чем для Робо-Джеффа. Только подумайте: Робо-Джеффу покажется, что часы доктора Дейва идут медленнее в два раза, поэтому и доктор Дейв стареет вполовину медленнее. Как и при разговоре о специальной теории относительности, оговоримся, что это не оптическая иллюзия. С точки зрения Робо-Джеффа, доктор Дейв стареет медленнее, его цифровые часы тикают медленнее и сам он движется замедленно.

В целом это правда. Вблизи массивных тел часы идут медленнее, чем вдалеке. Даже на поверхности Земли время идет медленнее, чем в глубоком космосе, но всего лишь на одну миллиардную. Для сравнения: через сто лет часы в глубоком космосе и на Земле будут идти с разницей всего в три секунды. Конечно, вас не удивит, что эффект так незначителен. Если бы разница была заметнее, то ваша физическая интуиция знала бы об этом. Однако, как мы увидим, вблизи горизонта событий черной дыры этот эффект становится значительным. Далёким наблюдателям покажется, что астронавт, который прилег отдохнуть у горизонта событий, движется бесконечно медленно[79].

В этой главе мы будем особенно много говорить обо всяких диковинах — о кротовых норах, машинах времени, космических струнах и прочих странностях. С черных дыр мы начали потому, что они почти наверняка существуют в реальности. Мы думаем, что почти что видели их.

Прежде чем рассказать вам о наблюдаемых свидетельствах существования черных дыр, нам, вероятно, следует первым делом развенчать и отмести некоторые распространенные заблуждения.

1. Черные дыры — это не неостановимые адские машины, которыми их пытаются выставить. Например, если бы наше Солнце вдруг превратилось в черную дыру, не произошло бы ничего интересного… ну, не совсем. Мы бы, конечно, погибли, но лишь по той прозаической причине, что замерзли бы без солнечного света. Однако Землю эта новая черная дыра не засосала бы. Даже если размер объекта меняется, с гравитационной точки зрения он функционирует по прежним законам. Гравитация на прежнем расстоянии от него останется прежней, и Земля будет по-прежнему вращаться по своей орбите. Гравитация вдали от черных дыр ведет себя в точности так же, как и гравитация любого другого тела с такой же массой.

2. На самом деле черные дыры не совсем черные. Да, сама черная дыра не видна, но все, что на нее падает, светится, и это видно. В рентгеновских лучах черные дыры выглядят как очень яркие объекты.

В 1974 году Стивен Хокинг выдвинул одну очень интересную теорию. Хотя из черной дыры ничего не излучается, область непосредственно рядом с ней — место очень динамичное. Постоянно возникают и аннигилируют парами частицы и античастицы (например, электроны и их антиподы — позитроны), как мы видели в главе 2. Представьте себе пару частиц — электрон, который возник сразу за горизонтом событий, и позитрон, который возник непосредственно перед ним. Электрона, само собой, никто с тех пор не увидит, а позитрон, вероятно, возник с энергией, которой хватит на то, чтобы смыться. Впоследствии позитрон может выделить энергию (например, путем аннигиляции), которую заметят где-нибудь вдалеке. Конечно, такое может случиться с любой парой, состоящей из частицы и античастицы, в том числе из двух фотонов, которые сами себе античастицы. Вывод таков: черная дыра, предоставленная сама себе, начнет испускать энергию и излучение.

Такое впечатление, что мы получаем что-то из ничего. Откуда взялась дополнительная энергия? Из массы черной дыры. Эта модель «излучения Хокинга», как ее принято называть, предсказывает, что впоследствии все черные дыры таким образом испарят всю свою массу.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.