Ричард Фейнман - 8. Квантовая механика I Страница 28

Тут можно читать бесплатно Ричард Фейнман - 8. Квантовая механика I. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ричард Фейнман - 8. Квантовая механика I

Ричард Фейнман - 8. Квантовая механика I краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 8. Квантовая механика I» бесплатно полную версию:

Ричард Фейнман - 8. Квантовая механика I читать онлайн бесплатно

Ричард Фейнман - 8. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман

Вам должно становиться понятно, в какую форму выли­вается квантовомеханическое описание, когда мы описываем поведение чего-либо во времени.

* Если вы пропустили гл. 4, то можете пока просто считать (5.35) невыведенным правилом. Позже, в гл. 8, мы разберем прецессию спина подробнее, будут получены и эти амплитуды.

* Мы предполагаем, что фазы обязаны иметь одно и то же значение в соответствующих точках в двух системах координат. Впрочем, это весьма тонкое место, поскольку в квантовой механике фаза в значитель­ной степени произвольна. Чтобы до конца оправдать это предположение, нужны более детальные рассуждения, учитывающие интерференцию двух или нескольких амплитуд.

 

 

Глава 6

ГАМИЛЬТОНОВА МАТРИЦА

§ 1. Амплитуды и векторы

§ 2. Разложение век­торов состояний

§ 3. Каковы базисные состояния мира?

§ 4. Как состояния меняются во времени

§ 5. Гамильтонова матрица

§ б. Молекула аммиака

Повторить: гл. 49) (вып. 4) «Собст­венные колеба­ния»

§ 1. Амплитуды и векторы

Прежде чем приступить к основной теме этой главы, мы хотели бы изложить несколько математических идей, которые часто встреча­ются в книгах по квантовой механике. Знание их облегчит вам чтение других книг или статей по этому предмету. Первая идея — это тесное математическое подобие между уравнениями квантовой механики и формулами для скаляр­ного произведения двух векторов. Вы помните, что если c и j — два состояния, то амплитуда начать в j и кончить в c может быть записана в виде суммы (по полной совокупности базис­ных состояний) амплитуд перехода из j в одно из базисных состояний и затем из этого базис­ного состояния уже в c:

Мы объясняли это при помощи прибора Штер­на — Герлаха, но сейчас напоминаем вам, что в этих приборах нет нужды. Уравнение (6.1) — это математический закон, который верен всег­да, все равно, есть ли у нас фильтровальное оборудование или нет; вообще совсем не обя­зательно воображать наличие какого-то при­бора. Можно рассматривать это просто как формулу для амплитуды <c|j>.

Сопоставим (6.1) с формулой для скалярного произведения двух векторов В и А. Если В и А — обычные трехмерные векторы, то ска­лярное произведение можно написать так:

считая, что символ еi обозначает любой из трех единичных векторов в направлениях х.у и z. Тогда B·e1— это то, что обычно называют Вх, а В·е2— то, что обычно называют By, и т,д. Значит, (6.2) эквивалентно

ВхАхуАугАг,

а это и есть скалярное произведение В·А.

Сравнение (6.1) с (6.2) обнаруживает следующую аналогию. Состояния c и j соответствуют двум векторам А и В. Базис­ные состояния i отвечают специальным векторам еi, к которым мы относим все прочие векторы. Любой вектор может быть представлен как линейная комбинация трех «базисных векто­ров» еi. Далее, если вам известны коэффициенты при каждом «базисном векторе» в этой комбинации, т. е. три его компонен­ты, то вы знаете о векторе все. Точно так же любое квантовомеханическое состояние может быть полностью описано ампли­тудами <i|j> перехода в базисные состояния, и если эти коэф­фициенты вам известны, то вы знаете все, что можно знать о состоянии. Из-за этой тесной аналогии то, что мы назвали «состоянием», часто именуют «вектором состояния».

Раз базисные векторы еi перпендикулярны друг другу, то существует соотношение

Это соответствует соотношению (3.25) между базисными со­стояниями i

Теперь вы понимаете, почему говорят, что базисные состоя­ния i все «ортогональны друг другу».

Между (6.1) и скалярным произведением есть одно мини­мальное различие. У нас

а в векторной алгебре

А·В = В·А.

В квантовой механике с ее комплексными числами мы обязаны выдерживать порядок множителей, а в скалярном произве­дении порядок неважен.

Теперь рассмотрим такое векторное уравнение:

оно немножко необычно, но тем не менее верно. И означает оно то же самое, что и

Заметьте, однако, что в (6.6) входит величина, отличная от скалярного произведения. Скалярное произведение — это про­сто число, а (6.6) — векторное уравнение. Одним из великих приемов векторного анализа было абстрагировать от уравне­ний идею самого вектора. Равным образом можно попытаться абстрагировать от уравнения (6.1) то, что в квантовой механике является аналогом «вектора». И это действительно можно сделать. Уберем <c| по обе стороны (6.1) и напишем такое урав­нение (не пугайтесь — это просто обозначение, и через пару минут вы узнаете, что означают эти символы):

Скобку <c|j> представляют себе состоящей из двух полови­нок. Вторую половинку |j> называют кет, а первую <c| на­зывают брэ (поставленные рядом они образуют брэ-кетєbгаcket, скоб-каєскобка — обозначение, предложенное Дираком); полусимволы <c| и |j> также называют векторами состоя­ний. Это не числа отнюдь, а нам вообще-то нужно, чтобы результаты наших расчетов выражались числами; стало быть, такие «незаконченные» величины представляют собой проме­жуточные шаги в расчетах.

До сих пор мы все свои результаты выражали с помощью чисел. Как же мы умудрялись избегать векторов? Забавно, что даже в обычной векторной алгебре можно сделать так, чтобы во все уравнения входили только числа. Например, вместо векторного уравнения типа

F=та всегда можно написать

C·F=(ma).

Получается уравнение, связывающее скалярные произведения и справедливое для любого вектора С. Но если оно верно для любого С, то едва ли имеет смысл вообще писать это С!

Теперь вернемся к (6.1). Это уравнение справедливо при любых c. Значит, для сокращения письма мы должны просто убрать c и написать вместо (6.1) уравнение (6.8). Это уравне­ние снабдит нас той же самой информацией, лишь бы мы пони­мали, что его всегда надлежит «завершить», «умножив слева на...», т. е. просто дописав некоторое <c| по обе стороны знака равенства. Следовательно, (6.8) означает в точности то же, что и (6.1),— ни более ни менее. Если вы предпочитаете числа, вы подставляете то <c|, которое вам нужно.

Может быть, вы в уравнении (6.8) уже нацелились и на j? Раз (6.8) справедливо при любом j, зачем же нам его держать? И действительно, Дирак предлагает абстрагироваться и от j, так что остается только

Вот он каков — великий закон квантовой механики! Этот закон утверждает, что если вы вставите любые два состояния c и j с обеих сторон, слева и справа, то опять вернетесь к (6.1). Уравнение (6.9) вообще-то не очень полезно, но зато является неплохим напоминанием о том, что уравнение выполняется для любых двух состояний.

§ 2. Разложение векторов состояний

Посмотрим на уравнение (6.8) еще раз; его можно рассмат­ривать следующим образом. Любой вектор состояния |j> может быть представлен в виде линейной комбинации совокуп­ности базисных «векторов» с подходящими коэффициентами, или, если угодно, в виде суперпозиции «единичных векторов» в подходящих пропорциях. Чтобы подчеркнуть, что коэффи­циенты <i|j> — это просто обычные (комплексные) числа, на­пишем

<i|j>=Сi. Тогда (6.8) совпадает с

Такое же уравнение можно написать и для всякого другого вектора состояния, скажем для |c>, но, конечно, с другими коэффициентами, скажем с Di. Тогда будем иметь

где Di это просто амплитуды <i|c>.

Представим, что мы начали бы с того, что в (6.1) абстра­гировались бы от j. Тогда мы бы имели

Вспоминая, что <c|i>=<i|c>*, можно записать это в виде

А теперь интересно вот что: чтобы обратно получить <c|j>, можно просто перемножить (6.13) и (6.10). Только, делая это, надо быть внимательным к индексам суммирования, потому что они в разных уравнениях разные. Перепишем сперва (6.13):

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.