Ричард Фейнман - 5. Электричество и магнетизм Страница 4
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 18
- Добавлено: 2019-08-13 11:13:22
Ричард Фейнман - 5. Электричество и магнетизм краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 5. Электричество и магнетизм» бесплатно полную версию:Ричард Фейнман - 5. Электричество и магнетизм читать онлайн бесплатно
Откуда же берутся эти токи? Один источник — это движение электронов по атомным орбитам. У железа это не так, но у некоторых материалов происхождение магнетизма именно таково. Кроме вращения вокруг ядра атома, электрон вращается еще вокруг своей собственной оси (что-то похожее на вращение Земли); вот от этого-то вращения и возникает ток, создающий магнитное поле железа. (Мы сказали «что-то похожее на вращение Земли», потому что на самом деле в квантовой механике вопрос столь глубок, что не укладывается достаточно хорошо в классические представления.) В большинстве веществ часть электронов вертится в одну сторону, другая — в другую, так что магнетизм исчезает, а в железе (по таинственной причине, о которой мы поговорим позже) многие электроны вращаются так, что их оси смотрят в одну сторону и это служит источником магнетизма.
Поскольку поля магнитов порождаются токами, то в уравнения (1.8) и (1.9) нет нужды вставлять добавочные члены, учитывающие существование магнитов. В этих уравнениях речь идет обо всех токах, включая круговые токи от вращающихся электронов, и закон оказывается правильным. Надо еще отметить, что, согласно уравнению (1.8), магнитных зарядов, подобных электрическим зарядам, стоящим в правой части уравнения (1.6), не существует. Они никогда не были обнаружены.
Первый член в правой части уравнения (1.9) был открыт Максвеллом теоретически; он очень важен. Он говорит, что изменение электрических полей вызывает магнитные явления. На самом деле без этого члена уравнение утеряло бы смысл, ведь без него исчезли бы токи в незамкнутых контурах. А на деле такие токи существуют; об этом говорит следующий пример. Представьте конденсатор, составленный из двух плоских пластин.
Фиг. 1.9. Магнитная палочка, показанная на фиг. 1.6,
может быть заменена катушкой, по которой течет
ток.
На провод по-прежнему будет действовать сила.
Фиг. 1.10. Циркуляция поля В по кривой С определяется либо током, текущим сквозь поверхность S1 либо быстротой изменения потока, поля Е сквозь поверхность S2.
Он заряжается током, притекающим к одной из пластин и оттекающим от другой, как показано на фиг. 1.10. Проведем вокруг одного из проводов кривую С и натянем на нее поверхность (поверхность S1, которая пересечет провод. В соответствии с уравнением (1.9) циркуляция поля В по кривой С дается величиной тока в проводе (умноженной на с2). Но что будет, если мы натянем на кривую другую поверхность S2 в форме чашки, донышко которой расположено между пластинами конденсатора и не касается провода? Через такую поверхность никакой ток, конечно, не проходит. Но ведь простое изменение положения и формы воображаемой поверхности не должно изменять реального магнитного поля! Циркуляция поля В должна остаться прежней. И действительно, первый член в правой части уравнения (1.9) так комбинируется со вторым членом, что для обеих поверхностей S1 и S2возникает одинаковый эффект. Для S2циркуляция вектора В выражается через степень изменения потока вектора Е от одной пластины к другой. И получается, что изменение Е связано с током как раз так, что уравнение (1.9) оказывается выполненным. Максвелл видел необходимость этого и был первым, кто написал полное уравнение.
С помощью устройства, изображенного на фиг. 1.6, можно продемонстрировать другой закон электромагнетизма. Отсоединим концы висящей проволочки от батарейки и присоединим их к гальванометру — прибору, регистрирующему прохождение тока по проводу. Стоит лишь в поле магнита качнуть проволоку, как по ней сразу пойдет ток. Это новое следствие уравнения (1.1): электроны в проводе почувствуют действие силы F=qvXB. Скорость их сейчас направлена в сторону, потому что они отклоняются вместе с проволочкой. Это v вместе с вертикально направленным полем В магнита приводит к силе, действующей на электроны вдоль провода, и электроны отправляются к гальванометру.
Положим, однако, что мы оставили проволочку в покое и принялись перемещать магнит. Мы чувствуем, что никакой разницы быть не должно, ведь относительное движение то же самое, и впрямь ток по гальванометру идет. Но как же магнитное поле действует на покоящиеся заряды? В соответствии с уравнением (1.1) должно возникнуть электрическое поле. Движущийся магнит должен создавать электрическое поле. На вопрос — как это происходит, отвечает количественно уравнение (1.7). Это уравнение описывает множество практически очень важных явлений, происходящих в электрических генераторах и трансформаторах.
Наиболее замечательное следствие наших уравнений — это то, что, сочетая уравнения (1.7) и (1.9), можно понять, отчего электромагнитные явления распространяются на дальние расстояния. Причина этого, грубо говоря, примерно такова: предположим, что где-то имеется магнитное поле, которое возрастает по величине, скажем, оттого, что внезапно пустили ток по проводу. Тогда из уравнения (1.7) следует, что должна возникнуть циркуляция электрического поля. Когда электрическое поле начинает постепенно возрастать для возникновения циркуляции, тогда, согласно уравнению (1.9), должна возникать и магнитная циркуляция. Но возрастание этого магнитного поля создаст новую циркуляцию электрического поля и т. д. Таким способом поля распространяются сквозь пространство, не нуждаясь ни в зарядах, ни в токах нигде, кроме источника полей. Именно таким способом мы видим друг друга! Все это спрятано в уравнениях электромагнитного поля.
§ 5. Что это такое — «поля»?
Сделаем теперь несколько замечаний о принятом нами способе рассмотрения этого вопроса. Вы можете сказать: «Все эти потоки и циркуляции чересчур абстрактны. Пусть в каждой точке пространства есть электрическое поле, кроме того, имеются эти самые „законы". Но что же там на самом деле происходит? Почему вы не можете объяснять все это, скажем, тем, что что-то, что бы это ни было, протекает между зарядами?» Все зависит от ваших предрассудков. Многие физики часто говорят, что прямое действие сквозь пустоту, сквозь ничто, немыслимо. (Как они могут называть идею немыслимой, если она уже вымышлена?) Они говорят: «Посмотрите, ведь единственные силы, которые нам известны,— это прямое действие одной части вещества на другую. Невозможно, чтобы существовала сила без чего-то, передающего ее». Но что в действительности происходит, когда мы изучаем «прямое действие» одного куска вещества на другой? Мы обнаруживаем, что первый из них вовсе не «упирается» во второй; они слегка отстоят друг от друга, и между ними существуют электрические силы, действующие в малом масштабе. Иначе говоря, мы обнаруживаем, что собрались объяснить так называемое «действие посредством прямого контакта» — при помощи картины электрических сил. Конечно, неразумно пытаться стоять на том, что электрическая сила должна выглядеть так же, как старый привычный мышечный тяни-толкай, если все равно оказывается, что все наши попытки тянуть или толкать приводят к электрическим силам! Единственно разумная постановка вопроса — спросить, какой путь рассмотрения электрических эффектов наиболее удобен. Одни предпочитают представлять их как взаимодействие зарядов на расстоянии и пользоваться сложным законом. Другим по душе силовые линии. Они их все время чертят, и им кажется, что писать разные Е и В слишком абстрактно. Но линии поля — это всего лишь грубый способ описания поля, и очень трудно сформулировать строгие, количественные законы непосредственно в терминах линий поля. К тому же понятие о линиях поля не содержит глубочайшего из принципов электродинамики — принципа суперпозиции. Даже если мы знаем, как выглядят силовые линии одной совокупности зарядов, затем другой совокупности, мы все равно не получим никакого представления о картине силовых линий, когда обе совокупности зарядов действуют вместе. А с математических позиций наложение проделать легко, надо просто сложить два вектора. У силовых линий есть свои достоинства, они дают наглядную картину, но есть у них и свои недостатки. Способ рассуждений, основанный на понятии о непосредственном взаимодействии (близкодействии), тоже обладает большими преимуществами, пока речь идет о покоящихся электрических зарядах, но обладает и большими недостатками, если иметь дело с быстрым движением зарядов.
Лучше всего пользоваться абстрактным представлением о поле. Жаль, конечно, что оно абстрактно, но ничего не поделаешь. Попытки представить электрическое поле как движение каких-то зубчатых колесиков или с помощью силовых линий или как напряжения в каких-то материалах потребовали от физиков больше усилий, чем понадобилось бы для того, чтобы просто получить правильные ответы на задачи электродинамики. Интересно, что правильные уравнения поведения света в кристаллах были выведены Мак-Куллохом еще в 1843 г. Но все ему говорили: «Позвольте, ведь нет же ни одного реального материала, механические свойства которого могли бы удовлетворить этим уравнениям, а поскольку свет — это колебания, которые должны происходить в чем-то, постольку мы не можем поверить этим абстрактным уравнениям». Если бы у его современников не было этой предвзятости, они бы поверили в правильные уравнения поведения света в кристаллах намного раньше того, чем это на самом деле случилось.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.