Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов Страница 4

Тут можно читать бесплатно Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов. Жанр: Научные и научно-популярные книги / Физика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов

Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов» бесплатно полную версию:

Квантовая механика – самый точный из известных человечеству способов описания мира на той фундаментальной глубине, которая определяет его структуру, но недоступна прямому наблюдению. Только благодаря квантовой природе удается существовать атомам, людям, звездам и почти всему остальному. Квантовые эффекты, которые уже задействованы в технологиях, максимально приближаются к нашим представлениям о чудесах. Но в силу самого своего устройства квантовая механика оставляет недосказанности в отношении поведения квантовых объектов и свойств реальности.
На заре второго квантового столетия Алексей Семихатов, автор бестселлера «Всё, что движется», предлагает последовательное изложение современного состояния квантовой механики. Каковы принципиальные особенности квантового мира и какой ценой их можно примирить с интуицией? По каким правилам развиваются квантовые системы во времени и как в это развитие вмешиваются вероятности? Как различные интерпретации квантовой механики подталкивают нас к глубоко философским заключениям о возможном устройстве реальности – от параллельных вселенных до разрывов в восприятии? И как привычная нам реальность возникает из чуждой ей квантовой? Что все-таки делает квантовый компьютер, что и как вовлекается в квантовую запутанность и почему квантовым объектам приходится существовать без некоторых свойств? Оказывается, о квантовой механике можно всерьез говорить понятным языком, а обсуждение ее сложных мест делает этот разговор только интереснее.
Согласно квантовым законам и только лишь благодаря квантовым законам существуют атомы, из которых состоим и мы сами, и почти все на планете Земля; благодаря квантовым законам горит Солнце; квантовые процессы определяют взаимодействие света и вещества; весь наш мир собран из квантовых объектов. Но фундаментальная квантовая природа в глубине мира остается в основном незаметной из-за мельтешения огромного числа мельчайших участников. По отдельности они ведут себя квантово и взаимодействуют друг с другом тоже по квантовым правилам, но все вместе образуют привычный нам наблюдаемый, и почти ничем не квантовый, мир…. Парадоксальным образом привычные свойства окружающего мира основаны на чуждых ему квантовых явлениях.
Особенности
26 иллюстраций, нарисованных специально для книги. Иллюстратор Нюся Красовицкая предложила философско-метафорическое видение предмета, определяющая черта которого – отсутствие наглядности.
Квантовая механика не похожа на другие физические теории. Она поразительно успешна на практике, а ее логическая структура приводит к интригующим проблемам философского порядка. Ее вычислительная схема основана на строгих формальных предписаниях, но знаменательным образом обходит стороной вопрос о том, что же физически происходит в пространстве-времени. И в соответствии со своей собственной логикой квантовая механика ставит перед нами вопросы об устройстве реальности, но не затрудняет себя однозначными ответами.
Для кого
Для тех, кому интересно, какие правила игры, радикально отличающиеся от привычных, лежат в самой основе мира и определяют устройство и нас самих, и почти всего, что нас окружает.
Мир выглядел бы совершенно безумным, если бы в нашем восприятии отражалась даже малая часть экзотически запутанных состояний, которые в огромном количестве возникают в ходе эволюции волновой функции под управлением уравнения Шрёдингера. Общим местом была бы неопределенность положения и ориентации в пространстве; объекты находились бы в самых немыслимых комбинациях запутанных свойств.

Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов читать онлайн бесплатно

Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов - читать книгу онлайн бесплатно, автор Алексей Михайлович Семихатов

углубиться в структуру вещей. Одно из моих детских воспоминаний – микроскоп у нас дома и загадочные разноцветные картинки каменных срезов – шлифов, которые изучала моя мама и на которые время от времени мне удавалось взглянуть. Каждая такая картинка сама по себе ничем не напоминала камень, но несла в себе информацию о его структуре и даже происхождении. Погружение в глубину вещей «объясняло» эти вещи – в данном случае горные породы – как определенную комбинацию нескольких более примитивных блоков, а именно минералов. Вопрос следующего уровня – из чего состоят сами минералы – был уже предметом не петрографии («науки о камнях»), а химии («науки о составе всего»). Путешествие еще на несколько уровней «вниз» и является предметом этой книги – в первую очередь в отношении того, какие правила там действуют и как эти правила определяют условия сборки элементов, которые в конце концов складываются во все, что нас окружает.

Еще в первой половине XIX в. о структуре материи стало постепенно известно примерно следующее. У каждого вещества (чистого, т. е. не являющегося смесью) имеется наименьшая часть – атом или молекула. Молекулы же построены как комбинации нескольких атомов – элементов, меньше которых уже ничего нет. В химических реакциях одни молекулы разрушаются, а другие образуются, и происходит это именно за счет перераспределения атомов между ними.

Сейчас мы узнаём это в школе, часто не вполне осознавая, что уже здесь намечается разрыв с привычной реальностью. Дело в том, что этих атомов и молекул не видно ни в один микроскоп в обычном понимании этого слова. И возникли они в науке XIX в. не как элементы физической реальности, а как «средство бухгалтерского учета» в химических реакциях – как вычислительный прием, позволяющий определить, какое количество одного вещества полностью прореагирует с заданным количеством другого вещества. В этом самом месте мы впервые встречаемся с мотивом, который, с некоторыми вариациями, прозвучит для нас еще не раз. Этим атомам, которые использовались для подсчета баланса в химических реакциях, не назначалось никаких других свойств, кроме способности вступать в комбинации друг с другом, составляя тем самым различные молекулы. Это и правда было средством учета, почти как разбиение доходов и расходов по статьям. В таком теоретическом качестве идея атомов отлично работала, но совершенно правомочно звучал вопрос: а существуют ли они? Не слишком ли самоуверенно думать, что раз мы нашли удобную вычислительную схему для определения правильных количеств веществ в химических реакциях и успешно оперируем ею на бумаге, то в природе, видите ли, на полном серьезе обнаружатся элементы этой схемы?

Скепсис (который, надо сказать, является одним из составляющих науки) набрал немалую силу в отношении атомов на рубеже XIX и XX вв., и реальность этих конструктов многим (включая и Менделеева – первооткрывателя Периодического закона) представлялась тогда далеко не очевидной. Дополнительный аргумент скептиков состоял в том, что атомы, как считалось, принципиально ненаблюдаемы. Спрашивается, следует ли полагаться на «реальное» существование объектов, реальность которых едва ли можно проверить?

Увидеть атом и правда нельзя, причем не из-за свойств нашего зрения, а в силу определения того, что значит «увидеть». Дело в том, что различить с помощью света можно только те подробности, которые по размеру больше (а лучше – заметно больше), чем длина световой волны. А у видимого света, даже если он фиолетовый, т. е. наиболее коротковолновый, длина волны такая, что на ней укладывается пара тысяч атомов. Попробуйте-ка разглядеть одну букву в слове, если самое мелкое, что можно увидеть, – слово из тысячи букв! (Красивые изображения атомов, которыми нередко иллюстрируются научные достижения, – например, атомы, уложенные регулярными рядами, – это результаты компьютерной обработки данных, которые получены довольно хитрыми, непрямыми способами и сами по себе фотографиями не являются; обычно это восстановленная по некоторым косвенным измерениям усредненная электронная плотность.) В общем, я предлагаю начинать привыкать к тому, что атом никак не выглядит.

Принято воздавать должное атомистической концепции, уходящей корнями в Античность. Да, порой интересно искать в прошлом предшественников дорогих нам существенно более поздних идей, но, действуя так, мы часто переносим на те ранние догадки и предположения хотя бы часть того, что нам сейчас известно про обсуждаемую концепцию. И заодно мы склонны забывать, что эти первоначальные идеи конкурировали тогда с другими, часто противоположными воззрениями, а сигналов из будущего насчет предпочтения одних перед другими не поступало. Предсказал ли атомы в V в. до н. э. Демокрит, высказавший идею о существовании пустоты и неделимых атомов, исходя при этом из вполне философского беспокойства по поводу бесконечной делимости материи? Произвольно сделанное предположение, пусть даже ставшее фундаментом философской системы, можно с легкостью «опровергнуть», высказав другое равно произвольное предположение и выстроив на его основе другую философскую систему. В точности так и поступил с атомами Аристотель (ок. 330 г. до н. э.), высказав противоположную идею непрерывности и заодно разделавшись с пустотой (которой, по его известному мнению, природа не терпит).

Серьезная же дискуссия о реальности атомов, с опорой на опыт в комбинации с существенно более развитыми теоретическими методами, пришла к своему завершению после 1908 г. Скепсис начала 20-го века оказался преодолен благодаря экспериментам, в которых был остроумно задействован «посредник» – мелкая частичка, брошенная в жидкость. От нее требовалось быть настолько мелкой, чтобы случайным образом дергаться в жидкости под действием «пинков», которые сообщают ей непрестанно движущиеся молекулы, но при этом достаточно крупной, чтобы (в отличие от самих молекул и атомов) ее можно было разглядеть в микроскоп. Оказалось, что характер видимого движения такой частички действительно определяется «пинками» со стороны предполагаемых невидимых агентов и, более того, отражает некоторые свойства этих агентов, например их массу и характерный размер, – в полном согласии с тем, что получалось, если считать эти агенты молекулами. Что же более основательно доказывает физическое, а не номенклатурное существование каких-либо объектов, как не удары, получаемые с их стороны? Атомы прочно и уже безвозвратно прописались в наших взглядах на мир.

Но победа передового атомизма во всемирном масштабе не обошлась, как это случается в подобных ситуациях, без перегибов. Вольно или невольно мысль склонялась к тому, что раз атомы пихаются как маленькие мячики, то, наверное, они и представляют собой что-то похожее на мячики, только очень маленькие. Но «мячики, только очень маленькие» оставляют больше вопросов, чем дают ответов. Например, как представлять себе их поверхность: из чего она сделана? Если снова затянуть ту же песню – сделана, мол, из еще более мелких штучек, – то и правда пора обращаться к Демокриту за моральной поддержкой против дурного деления материи на всё более мелкие части. Однако инерция мышления сильна и в несчетном числе рассказов об устройстве атомного мира продолжали существовать маленькие шарики.

Желание видеть внутреннее устройство вещей как миниатюризацию чего-то привычного было все еще заметно в модели атома, которая появилась в 1913 г. В ней атом уподоблялся планетной системе с электронами вместо планет и ядром вместо звезды, но на орбиты накладывались жесткие условия, из-за которых оказывались возможными лишь отдельные, «избранные» орбиты. Эта модель была прогрессивной для того момента, она принесла Нобелевскую премию ее автору, Бору, но и пользу в качестве важного шага к разрыву с классической картиной мира, но это неправильная модель. Тем не менее аналогия с «понятным» устройством вещей сделала ее, по существу, мемом, хотя после появления настоящей квантовой механики сам автор модели, Бор, сталкиваясь с апелляциями к ней, вопрошал: «Они что, никогда не слышали про квантовую механику?» При случае стоит спросить себя, каким же образом несколько орбит превращают крохотный объем пространства во что-то, похожее не на диск, а на шар? И как, собственно, организовать атом, одинаковый по всем направлениям, исходящим из его центра, в простейшем случае, когда там имеется всего один электрон? (Солнечную систему с одним только Меркурием сложно назвать шарообразной.)

С электронами мы слегка забежали вперед, и сейчас это исправим. К моменту победы атомизма действительно никто уже не воспринимал атомы как нечто неделимое: стало понятно, что в них содержатся носители отрицательного электрического заряда, которые при определенных условиях могут оттуда уходить. Это электроны, намеки на существование которых появлялись уже с середины XIX в., но которые были «официально» открыты в 1897 г. именно как агенты, проявляющие себя

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.