Яков Перельман - Занимательная физика. Книга 2 Страница 42

Тут можно читать бесплатно Яков Перельман - Занимательная физика. Книга 2. Жанр: Научные и научно-популярные книги / Физика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Яков Перельман - Занимательная физика. Книга 2

Яков Перельман - Занимательная физика. Книга 2 краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Яков Перельман - Занимательная физика. Книга 2» бесплатно полную версию:
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием.

Яков Перельман - Занимательная физика. Книга 2 читать онлайн бесплатно

Яков Перельман - Занимательная физика. Книга 2 - читать книгу онлайн бесплатно, автор Яков Перельман

Видимый размер светил астрономы определяют величиной того угла, под которым мы их видим. «Угловой величиной», «углом зрения» называют угол, который составляют две прямые, проведенные к глазу от крайних точек рассматриваемого тела (рис. 125). Углы же, как известно, измеряются градусами, минутами и секундами. На вопрос о видимой величине лунного диска астроном не скажет, что диск равен яблоку или тарелке, а ответит, что он равен половине градуса; это значит, что прямые линии, проведенные от краев лунного диска к нашему глазу, составляют угол в полградуса. Такое определение видимых размеров есть единственно правильное, не порождающее недоразумений.

Рисунок 125. Что такое угол зрения.

Геометрия учит[66], что предмет, удаленный от глаза на расстояние, в 57 раз большее его поперечника, должен представляться наблюдателю под углом в 1 градус. Например, яблоко в 5 см диаметром будет иметь угловую величину в 1 градус, если его держать от глаза на расстоянии 5×57 см. На расстоянии вдвое большем оно представится под углом 0,5 градуса, т. е. такой же величины, какой мы видим Луну. Если угодно, вы можете сказать, что Луна кажется вам величиной с яблоко, — но при условии, что яблоко это удалено от глаза на 570 см (около 6 м). При желании сравнить видимую величину Луны с тарелкой вам придется отодвинуть тарелку метров на 30. Большинство людей не хочет верить, что Луна представляется такой маленькой; но попробуйте поместить гривенник на таком расстоянии от глаза, которое в 114 раз больше его диаметра: он как раз покроет Луну, хотя удален от глаза на два метра.

Если бы вам предложили нарисовать на бумаге кружок, изображающий диск Луны, видимый простым глазом, задача показалась бы вам недостаточно определенной: кружок может быть и большим и маленьким, смотря по тому, как далеко он отодвинут от глаза. Но условия определятся, если остановимся на том расстоянии, на каком мы обыкновенно держим книги, чертежи и т. п., т. е. на расстоянии лучшего зрения. Оно равно для нормального глаза 25 см.

Итак, вычислим, какой величины должен быть кружок хотя бы на странице этой книги, чтобы видимый размер его равнялся лунному диску. Расчет прост: надо разделить расстояние 25 см на 114. Получим довольно незначительную величину — чуть больше 2 мм! Примерно такой ширины буква «о» типографского шрифта этой книги. Прямо не верится, что Луна, а также равное ей по видимым размерам Солнце кажутся нам под таким небольшим углом!

Вы замечали, вероятно, что после того, как глаз ваш был направлен на Солнце, в поле зрения долго мелькают цветные кружки. Эти так называемые «оптические следы» имеют ту же угловую величину, что и Солнце. Но кажущиеся размеры их меняются: когда вы смотрите на небо, они имеют величину солнечного диска; когда же бросаете взгляд на лежащую перед вами книгу, «след» Солнца занимает на странице место кружка с поперечником около 2 мм, наглядно подтверждая правильность нашего расчета.

Видимые размеры светил

Если бы, сохраняя угловые размеры, мы пожелали изобразить на бумаге созвездие Большой Медведицы, то получили бы фигуру, представленную на рис. 126. Глядя на нее с расстояния лучшего зрения, мы видим созвездие таким, каким оно рисуется нам на небесном своде. Это, так сказать, карта Большой Медведицы с сохранением угловых размеров. Если вам хорошо знакомо зрительное впечатление от этого созвездия, — не только фигура, а именно непосредственное зрительное впечатление, — то, всматриваясь в приложенный Рисунок , вы словно вновь переживаете это впечатление. Зная угловые расстояния между главными звездами всех созвездий (они приводятся в астрономических календарях и подробных справочных изданиях), вы можете начертить в «натуральном виде» целый астрономический атлас. Для этого достаточно запастись миллиметровой бумагой и считать на ней каждые 4,5 мм за градус (площади кружков, изображающих звезды, надо чертить пропорциональными яркости).

Рисунок 126. Созвездие Большой Медведицы с сохранением угловых размеров. Следует держать Рисунок на расстоянии 25 см от глаза.

Обратимся теперь к планетам. Видимые размеры их, как и звезд, настолько малы, что невооруженному глазу они кажутся лучистыми точками. Это и понятно, потому что ни одна планета (кроме разве Венеры в период ее наибольшей яркости) не представляется простому глазу под углом более 1 минуты, т. е. той предельной величины, при которой мы вообще можем различать предмет как тело, имеющее размеры (под меньшим углом каждый предмет кажется нам точкой без очертаний).

Вот величины разных планет в угловых секундах; против каждой планеты показаны две цифры — первая соответствует наименьшему расстоянию светила от Земли, вторая — наибольшему:

Секунды

Меркурий 13 — 5

Венера 64 — 10

Марс 25 — 3,5

Юпитер 50 — 31

Сатурн 20 — 15

Кольца Сатурна 48 — 35

Начертить эти величины в «натуральном масштабе» на бумаге нет возможности: даже целая угловая минута, т. е. 60 секунд, отвечает, на расстоянии лучшего зрения, лишь 0,04 мм — величине, неразличимой для простого глаза. Изобразим поэтому планетные диски такими, какими они кажутся в телескоп, увеличивающий в 100 раз. На рис. 127 перед вами таблица видимых размеров планет при таком увеличении. Нижняя дуга изображает край лунного (или солнечного) диска в телескопе со 100-кратным увеличением. Над ним — Меркурий при наименьшем его удалении от Земли. Еще выше Венера в разных фазах; в ближайшем к нам положении эта планета совершенно не видна, так как обращена к Земле неосвещенной половиной[67]; затем становится видимым ее узкий серп, — это наибольший из всех планетных «дисков»; в дальнейших фазах Венера все уменьшается, и полный диск имеет поперечник, в 6 раз меньший, нежели у узкого серпа.

Выше над Венерой изображен Марс. Налево вы видите его в наибольшем приближении к Земле; таким показывает его нам труба ее 100-кратным увеличением. Что можно различить на этом маленьком диске? Вообразите тот же кружок увеличенным в 10 раз, и получите представление о том, что видит астроном, изучающий Марс в могущественнейший телескоп с 1000-кратным увеличением. Можно ли на столь тесном пространстве уловить с несомненностью такие тонкие подробности, как пресловутые «каналы», или заметить легкое изменение окраски, связанное будто бы с растительностью на дне «океанов» этого мира? Неудивительно, что свидетельства одних наблюдателей существенно расходятся с показаниями других, и одни считают оптической иллюзией то, что будто бы отчетливо видят другие[68]…

Рисунок 127. Если держать этот чертеж на расстоянии 25 см от глаза, то начерченные на нем планетные диски представятся нам по размерам в точности такими, какими видны планеты в телескоп, увеличивающий в 100 раз.

Великан Юпитер со своими спутниками занимает очень видное место в нашей таблице; его диск значительно больше диска прочих планет (исключая серпа Венеры), а четыре главнейших спутника раскинуты по линии, равной почти половине лунного диска. Здесь Юпитер изображен в наибольшем приближении к Земле. Наконец, Сатурн с кольцами и самой крупной из его лун (Титаном) представляет собой также довольно заметный объект в моменты наибольшей близости к нам.

После сказанного читателю ясно, что каждый видимый предмет кажется нам тем меньшим, чем ближе мы его себе представляем. И обратно: если почему-либо мы преувеличим расстояние до предмета, то и самый предмет покажется нам соответственно больших размеров.

Далее приведен поучительный рассказ Эдгара По, описывающий именно такую иллюзию зрения. При кажущемся неправдоподобии он вовсе не фантастичен. Я сам сделался однажды жертвой почти такой же иллюзии, — да и многие из наших читателей, вероятно, вспомнят сходные случаи из собственной жизни.

«Сфинкс»

Рассказ Эдгара По[69]

«В эпоху ужасного владычества холеры в Нью-Йорке я получил приглашение от одного из моих родственников провести две недели на его уединенной даче. Мы провели бы время очень недурно, если бы не ужасные вести из города, получавшиеся ежедневно. Не было дня, который бы не принес нам известия о смерти кого-либо из знакомых. Под конец мы со страхом ожидали газету. Самый ветер с юга, казалось нам, был насыщен смертью. Эта леденящая мысль всецело овладела моей душой. Мой хозяин был человек более спокойного темперамента и старался ободрить меня.

На закате жаркого дня я сидел с книгой в руках у раскрытого окна, из которого открывался вид на отдаленный холм за рекой. Мысли мои давно уже отвлеклись от книги к унынию и отчаянию, царившим в соседнем городе. Подняв глаза, я случайно взглянул на обнаженный склон холма и увидел нечто странное: отвратительное чудовище быстро спускалось с вершины холма и исчезло в лесу у его подножия. В первую минуту, увидев чудовище, я усомнился в здравом состоянии моего рассудка или, по крайней мере, глаз, и только спустя несколько минут убедился, что я но брежу. Но если я опишу это чудовище (которое я видел совершенно ясно и за которым наблюдал все время, пока оно спускалось с холма), мои читатели, пожалуй, не так легко поверят этому.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.