Ричард Фейнман - 8. Квантовая механика I Страница 5
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 33
- Добавлено: 2019-08-13 11:04:17
Ричард Фейнман - 8. Квантовая механика I краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 8. Квантовая механика I» бесплатно полную версию:Ричард Фейнман - 8. Квантовая механика I читать онлайн бесплатно
Заметьте, что в принципе оба состояния различимы. Даже если в этом опыте мы их не различали, мы могли бы это сделать. И в соответствии с нашими прежними рассуждениями мы, стало быть, должны складывать вероятности, а не амплитуды.
Приведенный выше результат справедлив для многих ядер. Мишенью здесь могут служить и кислород, и углерод, и бериллий, и водород. Но он неверен при рассеянии a-частиц на a-частицах. В том единственном случае, когда обе частицы в точности одинаковы, экспериментальные данные не согласуются с предсказаниями формулы (1.14). Например, вероятность рассеяния на угол 90° в точности вдвое больше предсказанной вышеизложенной теорией — с частицами, являющимися ядрами «гелия», номер не проходит. Если мишень из Не3, а налетают на нее a-частицы (Не4), то все хорошо. И только когда мишень из Не4, т. е. ее ядра тождественны падающим a-частицам, только тогда рассеяние меняется с углом каким-то особым образом.
Быть может, вы уже догадались, в чем дело? В счетчике a-частица может очутиться по двум причинам: либо из-за рассеяния налетевшей a-частицы на угол q, либо из-за рассеяния ее на угол (p-q). Как мы можем удостовериться, кто попал в счетчик — частица-снаряд или частица-мишень? Никак. В случае рассеяния a-частиц на a-частицах существуют две альтернативы, различить которые нельзя. Приходится дать амплитудам вероятности интерферировать при помощи сложения, и вероятность обнаружить в счетчике a-частицу есть квадрат этой суммы:
Это совсем не то, что (1.14). Возьмите, скажем, угол я/2 (это легче себе представить). При q=p/2 мы, естественно, имеем f(q)=f(p-q), так что из (1.15) вероятность оказывается равной
А с другой стороны, если бы не было интерференции, формула (1.14) дала бы только 2|f(p/2)|2. Так что на угол 90° рассеивается вдвое больше частиц, чем можно было ожидать. Конечно, и под другими углами результаты будут другие. И мы приходим к необычному выводу: когда частицы тождественны, происходит нечто новое, чего не бывало, когда частицы можно было друг от друга отличить. При математическом описании вы обязаны складывать амплитуды взаимоисключающих процессов, в которых обе частицы просто обмениваются ролями, и происходит интерференция.
Еще более неожиданное явление происходит с рассеянием электронов на электронах или протонов на протонах. Тогда не верен ни один из прежних результатов! Для этих частиц мы должны призвать на помощь совершенно новое правило: если попадающий в некоторую точку электрон обменивается своей индивидуальностью с другим электроном, то новая амплитуда интерферирует со старой в противофазе. Это все равно интерференция, но с обратным знаком. В случае a-частиц, когда происходит обмен a-частицами, достигающими счетчика, амплитуды интерферируют с одним и тем же знаком. А в случае электронов амплитуды обмена интерферируют с разными знаками. С точностью до одной детали, о которой будет сейчас сказано, правильная формула для электронов в опыте, подобном изображенному на фиг. 1.8, такова:
Это утверждение нуждается в уточнении, потому что мы не учли спин электрона (у a-частиц спина нет).
Фиг, 1.8. Рассеяние электронов на электронах.
Если спины сталкивающихся электронов параллельны, то процессы а и б неразличимы.
Спин электрона можно считать направленным либо вверх, либо вниз по отношению к плоскости рассеяния. Если энергия в опыте достаточно низка, то магнитные силы, возникающие от токов, будут малы и не повлияют на спин. Предположим в нашем анализе, что так оно и есть, так что нет шансов, чтобы спины при столкновении перевернулись. Какой бы спин у электрона ни был, он уносит его с собой. Мы видим теперь, что есть много возможностей. У частицы-снаряда и частицы-мишени оба спина могут быть направлены вверх, или вниз, или в разные стороны. Если они оба направлены вверх, как на фиг. 1.8 (или оба — вниз), то после рассеяния останется то же самое, и амплитуда процесса будет разностью амплитуд тех двух возможностей, которые показаны на фиг. 1.8. Вероятность обнаружить электрон в счетчике D1тогда будет даваться формулой (1.16).
Предположим, однако, что у «снаряда» спин направлен вверх, а у «мишени» — вниз. У электрона, попавшего в счетчик D1, спин может оказаться либо направленным вверх, либо —вниз, и, измеряя этот спин, мы можем сказать, выскочил ли этот электрон из бомбардирующего пучка или же из мишени.
Фиг. 1.9. Рассеяние электронов с антипараллельными спинами.
Эти две возможности показаны на фиг. 1.9; в принципе они различимы, и поэтому интерференции не получится, просто сложатся две вероятности. Все это верно и тогда, когда оба первоначальных спина перевернуты, т. е. если спин слева смотрит вниз, а спин справа — вверх.
Таблица 1.1 · рассеяние неполяризованных частиц со спином 1/2
Наконец, если электроны вылетают случайно (например, они вылетают из накаленной вольфрамовой нити полностью неполяризованным пучком), то с равной вероятностью каждый отдельный электрон вылетит либо спином вверх, либо спином вниз. Если мы не собираемся в нашем опыте измерять в какой-нибудь точке спин электронов, то получается то, что называют экспериментом с неполяризованными частицами. Результат этого эксперимента лучше всего подсчитать, перечислив все мыслимые возможности, как это сделано в табл. 1.1. Для каждой различимой альтернативы отдельно подсчитана вероятность. Тогда полная вероятность есть сумма всех отдельных вероятностей. Заметьте, что для неполяризованных пучков результат при q=p/2 составляет половину классического результата для независимых частиц.
Поведение тождественных частиц приводит ко многим интересным следствиям; в следующей главе мы обсудим их поподробнее.
* Вообще-то направление рассеяния должно, конечно, описываться двумя углами — полярным углом j и азимутом q. Тогда следовало бы сказать, что рассеяние кислорода в направлении (q,j) означает, что a-частица движется в направлении (p-q, j+p). Однако для кулоновского рассеяния (и многих других случаев) амплитуда рассеяния не зависит от j. Тогда амплитуда того, что кислород полетел под углом 6, совпадает с амплитудой того, что a-частица полетела под углом (p-q).
* По-русски, наверно, правильнее говорить амплитуда вероятности, но короче говорить просто амплитуда и примириться с выражением типа «амплитуда того, что электрон находится в точке х».— Прим. ред.
* В американском издании этот том начинается с двух глав из второго тома [гл. 37 и 38 (вып. 3)], которые авторы считали нужным повторить. Это было сделано для того, чтобы третий том можно было читать, не обращаясь к прежним томам. В русском издании мы не стали печатать их снова: читатель должен всегда держать первые выпуски под рукой, поэтому нумерация глав в русском издании сдвинута на 2 единицы по сравнению с третьим томом. Из тех же соображений мы не перепечатали вновь гл. 34 и 35, они вошли в вып. 7.— Прим. ред.
Глава 2
ТОЖДЕСТВЕННЫЕ ЧАСТИЦЫ
§ 1.Бозе-частицы и ферми-частицы
§ 2.Состояния с двумя бозе-частицами
§ 3.Состояния с n бозе-частицами
§ 4.Излучение и поглощение фотонов
§ 5.Спектр абсолютно черного тела
§ 6.Жидкий гелий
§ 7.Принцип запрета
Повторить: гл. 41 (вып. 4) «Броуновское движение» (об излучении абсолютно черного тела гл. 42 (вып 4 «Применения кинетической теории»
§ 1. Бозе-частицы и ферми-частицы
В предыдущей главе мы начали рассматривать особые правила, по которым происходит с интерференция в процессах с двумя тождественными частицами. Тождественными мы считаем такие частицы, которые, подобно электронам, никак невозможно отличить друг от друга. Если в процессе имеются две тождественные частицы, то замена той, которая повернула к счетчику, на другую — это неотличаемая альтернатива, которая, как и во всех случаях неотличимых альтернатив, интерферирует с первоначальным случаем, когда обмена не было. Амплитудой события тогда служит сумма двух интерферирующих амплитуд, и существенно, что в одних случаях интерференция происходит в фазе, а в других — в противофазе.
Представим, что сталкиваются две частицы а и b и частица а рассеивается в направлении 1, а частица b — в направлении 2 (фиг. 2.1, а).
Жалоба
Напишите нам, и мы в срочном порядке примем меры.