Ричард Фейнман - 6. Электродинамика Страница 7
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 37
- Добавлено: 2019-08-13 11:17:25
Ричард Фейнман - 6. Электродинамика краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 6. Электродинамика» бесплатно полную версию:Ричард Фейнман - 6. Электродинамика читать онлайн бесплатно
Осознав, что электрический ток рождает магнитное поле, многие "сразу же предположили, что так или иначе магниты должны тоже создавать электрические поля. Для проверки этого предположения были поставлены различные эксперименты. Например, располагали два провода параллельно друг другу и по одному из них пропускали ток, пытаясь обнаружить ток в другом проводе. Мысль заключалась в том, что магнитное поле сможет как-то протащить электроны вдоль второго провода по закону, который должен формулироваться как-то так: «одинаковое стремится двигаться одинаковым образом». Но, пропуская по одному проводу самый большой ток и используя самый чувствительный гальванометр, обнаружить ток во втором проводе не удалось. Большие магниты тоже не давали никакого эффекта в расположенных поблизости проводах. Наконец, в 1840 г. Фарадей открыл существенную особенность, которую раньше упускали из виду,— электрические эффекты возникают только тогда, когда что-нибудь изменяется, Если в одной из двух проволок ток меняется, то в другой тоже наводится ток, или же если магнит движется вблизи электрического контура, то там возникает ток. Мы говорим теперь, что токи в этих случаях индуцируются. В этом и состояло явление индукции, открытое Фарадеем. Оно преобразило довольно скучную область статических полей в увлекательную динамическую область, в которой происходит огромное число удивительных явлений. Эта глава посвящена качественному описанию некоторых из них. Как мы увидим, можно довольно быстро попасть в очень сложные ситуации, трудно поддающиеся подробному количественному анализу. Но это неважно. Наша главная задача в этой главе — сначала познакомить вас с кругом относящихся сюда явлений. Тщательный анализ мы проделаем немного позже.
Из того, что мы уже знаем, нам легко понять кое-что о магнитной индукции, то, что не было известно во времена Фарадея. Мы знаем о существовании действующей на движущийся заряд силы vXВ, которая пропорциональна его скорости в магнитном поле. Пусть у нас есть проволока, которая движется вблизи магнита (фиг. 16.2), и пусть мы подсоединили концы проволоки к гальванометру. Когда проволока проходит над полюсом магнита, стрелка гальванометра сдвигается.
Магнит создает вертикальное магнитное поле, и, когда мы двигаем проволоку поперек поля, электроны в проволоке чувствуют силу, направленную вбок, т. е. перпендикулярно нолю и направлению движения. Сила толкает электроны вдоль проволоки. Но почему же при этом приходит в движение стрелка гальванометра, который расположен так далеко от этой силы? Да потому, что электроны, испытывающие магнитную силу, начинают двигаться и толкают (за счет электрического отталкивания) другие электроны, находящиеся чуть дальше по проволоке, а те в свою очередь отталкивают еще более удаленные электроны и так далее на большое расстояние.
Фиг. 16.2. Движение провода в магнитном поле создает ток (это регистрирует, гальванометр).
Любопытная штука.
Это так удивило Гаусса и Вебера, построившего впервые гальванометр, что они попытались определить, как далеко распространяются силы по проволоке. Они протянули проволоку поперек всего города, и один ее конец Гаусс присоединил к батарее (батареи были известны раньше генераторов), а Вебер наблюдал, как сдвигается стрелка гальванометра. И они обнаружили способ передавать сигналы на большое расстояние — это было рождение телеграфа! Разумеется, здесь нет прямого отношения к индукции, здесь речь шла о способе передачи тока по проволоке, о том, действительно ли ток продвигается за счет индукции или нет.
Предположим теперь, что в установке, изображенной на фиг. 16.2, мы проволоку оставляем в покое, а двигаем магнит. И снова наблюдаем эффект на гальванометре. Фарадей еще обнаружил, что движение магнита под проволокой (один способ) вызывает такой же эффект, как и движение проволоки над магнитом (другой способ). Но когда движется магнит, то на электроны проволоки уже больше не действует сила v X В. Это и есть то новое явление, которое открыл Фарадей. Сегодня мы можем попытаться понять его с помощью принципа относительности.
Мы уже поняли, что магнитное поле магнита возникает за счет его внутренних токов. Поэтому мы ожидаем появления такого же эффекта, если вместо магнита на фиг. 16.2 взять катушку из проволоки, по которой течет ток. Если двигать провод мимо катушки, то гальванометр обнаружит ток, равно, как и в том случае, когда катушка движется мимо провода. Но существует и еще более удивительная вещь: если менять магнитное поле катушки не за счет ее движения, а за счет изменения в ней тока, то гальванометр снова покажет наличие эффекта. Например, если расположить проволочную петлю рядом с катушкой (фиг. 16.3), причем обе они неподвижны, и выключить ток, то через гальванометр пройдет импульс тока. Если же снова включить ток в катушке, то стрелка гальванометра качнется в противоположную сторону.
Всякий раз, когда через гальванометр в установке, показанной на фиг. 16.2 или 16.3, проходит ток, в проводе в каком-то одном направлении возникает результативное давление на электроны. В разных местах электроны могут толкнуться в разные стороны, но в одном направлении напор оказывается больше, чем в другом. Учитывать нужно только давление электронов, просуммированное вдоль всей цепи. Мы называем этот результирующий напор электронов электродвижущей силой (сокращенно э. д. с.) цепи. Более точно э. д. с. определяется как тангенциальная сила, приходящаяся на один заряд, проинтегрированная по длине провода, вдоль всей цепи. Открытие Фарадея целиком состояло в том, что э. д. с. в проводе можно создать тремя способами: двигая провод, двигая магнит вблизи провода или меняя ток в соседнем проводе.
Обратимся снова к простому прибору, изображенному на фиг. 16.1, только теперь не будем пропускать ток через проволоку, чтобы придать ей вращение, а будем крутить рамку с помощью внешней силы, например рукой или с помощью водяного колеса. При вращении рамки ее провода движутся в магнитном поле, и мы обнаруживаем в цепи рамки э. д. с.
Фиг. 16.3. Катушка с током возбуждает ток в другой катушке, если первая катушка перемещается или если ток в ней меняется.
Мотор превратился в генератор.
Индуцированная э. д. с. возникает в катушке генератора за счет ее движения. Величина э. д. с. дается простым правилом, открытым Фарадеем. (Сейчас мы просто сформулируем это правило, а несколько позднее разберем его подробно.) Правило такое: если магнитный поток, проходящий через петлю (этот поток есть нормальная составляющая В, проинтегрированная по площади петли), меняется со временем, то э. д. с. равна скорости изменения потока. Мы будем в дальнейшем называть это «правилом потока». Вы видите, что, когда катушка на фиг. 16.1 вращается, поток через нее изменяется. Вначале, скажем, поток идет в одну сторону, а когда катушка повернется на 180°, тот же поток идет сквозь катушку по-другому. Если непрерывно вращать катушку, поток сначала будет положительным, затем отрицательным, потом опять положительным и т. д. Скорость изменения потока должна тоже меняться. Следовательно, в катушке возникает переменная э. д. с. Если присоединить два конца катушки к внешним проводам через скользящие контакты, которые называются контактными кольцами (просто, чтобы провода не перекручивались), мы получаем генератор переменного тока.
А можно с помощью скользящих контактов устроить и так, чтобы через каждые пол-оборота соединение между концами катушки и внешними проводами становилось противоположным, так что когда э. д. с. изменит свой знак, то и соединение станет противоположным. Тогда импульсы э. д. с. будут всегда толкать ток в одном направлении вдоль внешней цепи. Мы получаем так называемый генератор постоянного тока.
Прибор, изображенный на фиг. 16.1, может быть либо мотором, либо генератором. Связь между моторами и генераторами хорошо демонстрируется с помощью двух одинаковых «моторов» постоянного тока с постоянными магнитами, катушки которых соединены двумя медными проводами. Если ручку одного из «моторов» поворачивать механически, он становится генератором и приводит в движение второй как мотор. Если же поворачивать ручку второго, то генератором уже становится он, а первый работает как мотор. Итак, здесь мы встречаемся с интересным примером нового рода эквивалентности в природе: мотор и генератор эквивалентны. Количественная эквивалентность на самом деле не совсем случайна. Она связана с законом сохранения энергии.
Другой пример устройства, которое может работать либо для создания э. д. с., либо воспринимать действие э. д. с., представляет собой приемная часть обычного телефона, т. е. «слухофон». Первоначальный телефон Белла состоял из двух таких «слухофонов», соединенных двумя длинными проводами.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.