Ричард Фейнман - 8a. Квантовая механика I Страница 7

Тут можно читать бесплатно Ричард Фейнман - 8a. Квантовая механика I. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ричард Фейнман - 8a. Квантовая механика I

Ричард Фейнман - 8a. Квантовая механика I краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 8a. Квантовая механика I» бесплатно полную версию:

Ричард Фейнман - 8a. Квантовая механика I читать онлайн бесплатно

Ричард Фейнман - 8a. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман

Вы видите, что это та же игра, в какую мы играли в послед­них двух главах. Если пренебречь способностью электрона перескакивать туда и обратно, то два состояния будут иметь в точности одинаковую энергию. Эта энергия, однако, расщеп­ляется на два энергетических уровня из-за того, что электрон может переходить туда и назад, и чем больше вероятность пере­хода, тем больше расщепление. Стало быть, два уровня энер­гии системы равны Е0 и Е0-А, и состояния, у которых такие энергии, даются уравнениями (8.7).

Из нашего решения мы видим, что если протон и водород­ный ион как-то расположить близко один к другому, то элек­трон не останется подле одного протона, а будет перескакивать от протона к протону и обратно. Если вначале он был близ од­ного из протонов, то затем он начнет колебаться туда и назад между состояниями |1> и |2>, давая решение, меняющееся во времени. Чтобы получить решение, отвечающее самой низ­кой энергии (которое не меняется со временем), необходимо, чтобы вначале система обладала одинаковыми амплитудами пребывания электрона возле каждого из протонов. Кстати, вспомните, что электронов отнюдь не два; мы совсем не утверж­даем, что вокруг каждого протона имеется электрон. Имеется только один электрон, и это он имеет одинаковую амплитуду (1/Ц2 по величине) быть в том или ином положении.

Дальше, для электрона, который находится близ одного протона, амплитуда А оказаться близ другого зависит от рас­стояния между протонами. Чем они ближе один к другому, тем больше амплитуда. Вы помните, что в гл. 5 мы говорили об амплитуде «проникновения» электрона «сквозь барьер», на что по классическим канонам он не способен. Здесь то же самое положение дел. Амплитуда того, что электрон переберется к другому протону, спадает с расстоянием примерно по экспо­ненте (для больших расстояний). Раз вероятность, а следова­тельно, и значение А при сближении протонов возрастают, то возрастает и расстояние между уровнями энергии. Если си­стема находится в состоянии |I>, то энергия Е0+А с умень­шением расстояния растет так, что эти квантовомеханические эффекты приводят к силе отталкивания, стремящейся развести протоны. Если же система пребывает в состоянии |II>, то полная энергия при сближении протонов убывает; сущест­вует сила притяжения, подтягивающая протоны один к другому. Эти энергии меняются с расстоянием между протонами пример­но так, как показано на фиг. 8.2.

Фиг. 8.2. Энергии двух стационарных состояний иона h+2 как функция расстояния между двумя протонами.

Тем самым у нас появляется квантовомеханическое объяснение силы связи, скрепляющей

ион H+2.

Однако мы позабыли об одной вещи. В дополнение к только что описанной силе имеется также электростатическая сила взаимного отталкивания двух протонов. Когда оба протона очень удалены друг от друга (как на фиг. 8.1), то «голый» про­тон видит перед собой только нейтральный атом, так что элек­тростатической силой можно пренебречь. При очень тесных сближениях, однако, «голый» протон оказывается порой «внут­ри» электронного распределения, т. е. в среднем он ближе к протону, чем к электрону. Появляется некоторая добавочная электростатическая энергия, которая, конечно, положительна. Эта энергия — она тоже зависит от расстояния — должна быть включена в Е0. Значит, за Е0мы должны принять нечто похожее на штриховую кривую на фиг. 8.2; она быстро поды­мается на расстояниях, меньших, чем радиус атома водорода. Энергию переворота А надо вычесть и прибавить к этому Е0. Если это сделать, то энергии ЕIи ЕIIбудут меняться с меж­протонным расстоянием D, как показано на фиг. 8.3.

Фиг. 8.3. Уровни энергии иона H+2 как функция межпротонного расстояния D (EH=13,6 эв).

[На ри­сунке мы воспроизвели результаты более детальных выкладок. Межпротонное расстояние дано в ангстремах (1Е=10-8 см), а избыток энергии над протоном плюс водородным ионом да­ется в единицах энергии связи атома водорода, так называе­мых «ридбергах» (13,6 эв).]Мы видим, что состояние |II> имеет точку минимума энергии — равновесную конфи­гурацию (условие наинизшей энергии) для иона Н+2 . Энергия в этой точке ниже, чем энергии отдельно протона и отдельно водородного иона, так что система связана. Отдельный элект­рон действует так, что скрепляет протоны. Химик назвал бы это «одноэлектронной связью».

Этот род химической связи часто также называют «квантовомеханическим резонансом» (по сходству с двумя связанными маятниками, о котором мы уже говорили). Но звучит это таин­ственнее, чем оно есть на самом деле; это только тогда «резо­нанс», когда базисные состояния с самого начала неудачно выбраны, как у нас и было! А если выбрать состояние |II>, вы сразу получите наинизшее энергетическое состояние — и все.

Можно и по-иному объяснить, отчего энергия этого состоя­ния должна быть ниже, чем у протона плюс атома водорода. Представим себе электрон возле двух протонов, удаленных на определенное, но не очень большое расстояние. Вы помните, что электрон возле одиночного протона «размазан» из-за прин­ципа неопределенности. Он ищет равновесия, пытаясь раздо­быть энергию пониже (низкую кулоновскую потенциальную энергию) и не оказаться при этом сжатым в пространстве че­ресчур тесно, что привело бы к высокой кинетической энергии (из-за соотношения неопределенности DpDx»h). Если же про­тонов два, то будет больше места, где у электрона может быть низкая потенциальная энергия. Он может размазаться (снижая тем самым свою кинетическую энергию), не повышая при этом своей потенциальной энергии. В итоге его энергия ниже, чем в атоме водорода. Тогда почему же у другого состояния |I> энергия выше? Но заметьте, что это состояние есть разность состояний |1> и |2>. Вследствие симметрии |1> и |2> разность должна иметь нулевую амплитуду того, что электрон окажется на полпути между протонами. Это означает, что электрон немного сильнее ограничен в пространстве, что и приводит к большей энергии.

Следует сказать, что наше приближенное рассмотрение иона H+2 как двухуровневой системы рассыпается в прах, едва лишь протоны сблизятся до минимума энергии на кривой фиг. 8.3; тогда больше не получается хорошего значения истин­ной энергии связи. На малых удалениях энергии двух «со­стояний» на самом деле уже не равны Е0; требуется более тонкое квантовомеханическое рассмотрение.

Положим, мы теперь заинтересуемся, что случилось бы, если бы вместо двух протонов у нас были два разных объекта, скажем один протон и один положительный ион лития (причем обе частицы по-прежнему имеют по единичному положитель­ному заряду). В этом случае два члена Н11и H22 в гамильто­ниане больше не совпадали бы; они были бы совершенно раз­личны. Если бы оказалось, что разность (H11-H22) по абсо­лютной величине много больше А=-H12, то сила притяжения стала бы очень слабой. В этом можно убедиться следующим образом.

Если в (8.3) подставить H12H21=A2, то мы получим

Когда H11-H22 много больше А2, корень довольно точно равен

Тогда энергии обращаются в

Теперь они почти вплотную совпадают с энергиями H11 и H22 изолированных атомов и только чуть-чуть отличаются из-за наличия амплитуды перескока А.

Разность энергий III) равна

Добавка к расстоянию между уровнями из-за переброса электрона уже не равна ; она составляет А /(Н1122) — часть этой величины (что по предположению много меньше единицы). Кроме того, сама зависимость ЕIIIот расстояния между ядрами сейчас намного слабее, чем для иона Н+2: в нее тоже входит множитель А/(Н1122).Можно поэтому понять, от­чего связь несимметричных двуатомных молекул, как правило, очень слаба.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.