Ричард Фейнман - 6a. Электродинамика Страница 8
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 41
- Добавлено: 2019-08-13 11:08:46
Ричард Фейнман - 6a. Электродинамика краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 6a. Электродинамика» бесплатно полную версию:Ричард Фейнман - 6a. Электродинамика читать онлайн бесплатно
Контур транзистора и радиолампы имеет одну замечательную способность, которой лишены контуры, включающие одни импедансы: действительная часть эффективного импеданса zэфф может стать отрицательной. Мы видели, что действительная часть z представляет потери энергии.
Фиг. 22.29. Низкочастотная эквивалентная схема транзистора.
Но важная характеристика транзисторов и радиоламп состоит в том, что они снабжают контур энергией. (Конечно, они ее не «вырабатывают»; они берут энергию у цепи постоянного тока, у источника тока, и превращают ее в энергию переменного тока.) Стало быть, появляется возможность получить контур с отрицательным сопротивлением. Такой контур имеет интересное свойство: если подключить его к импедансу с положительной действительной частью, т. е. к положительному сопротивлению, и устроить все так, чтобы сумма двух действительных частей обратилась в нуль, то в этом объединенном контуре рассеяния энергии не будет. А раз нет потерь энергии, то любое переменное напряжение, стоит его однажды включить, никогда больше не исчезнет. Это основная идея работы осциллятора или генератора сигналов, который можно использовать в качестве источника переменного тока какой угодно частоты.
* Кое-кто говорит, что предметы мы обязаны называть словами «катушка» и «конденсатор», а их свойства — соответственно «индуктивность» и «емкость». Но я предпочитаю пользоваться словами, какие слышу в лаборатории, где почти всегда и про физическую катушку, и про ее самоиндукцию L говорят «индуктивность». Точно так же предпочитают говорить «емкость», «сопротивление», хотя часто можно услышать и слово «конденсатор».
*Эта эквивалентная схема годится только для низких частот. На высокой частоте эквивалентная схема усложняется, в нее надо включить различные, так называемые «паразитические», емкости и индуктивности.
Глава 23
ПОЛЫЕ РЕЗОНАТОРЫ
§ 1. Реальные элементы цепи
§ 2. Конденсатор на больших частотах
§ 3. Резонансная полость
§ 4. Собственные колебания полости
§ 5. Полости и резонансные контуры
Повторить; гл. 2. (вып. 2) «Резонанс»; гл. 49 (вып. 4)
«Собственные колебания».
§ 1. Реальные элементы цепи
Если посмотреть на любую цепь, состоящую из идеальных импедансов и генераторов, со стороны какой-нибудь пары клемм, то при данной частоте она будет эквивалентна генератору $, последовательно соединенному с импедансом z. Если приложить к этим клеммам напряжение V и вычислить из уравнений силу тока, то между током и напряжением должна получиться линейная зависимость. Поскольку все уравнения линейны, то и I должно зависеть от V линейно и только линейно. А самое общее линейное выражение можно записать в виде
(23.1)
Вообще-то и z и e могут как-то очень сложно зависеть от частоты w. Однако соотношение (23.1) — это то соотношение, которое получилось бы, если бы за клеммами находился просто генератор e(w), последовательно соединенный с импедансом z(w).
Можно поставить и обратный вопрос: имеется какое-то электромагнитное устройство с двумя полюсами (выводами) и нам известна связь между I и V, т. е. известны e и z как функции частоты; можно ли всегда найти такую комбинацию идеальных элементов, которая даст эквивалентный внутренний импеданс z? Ответ на это таков: для любой разумной, т. е. физически осмысленной функции z(w), действительно возможно построить с любой степенью точности модель с помощью контура, составленного из конечного числа идеальных элементов. Мы не собираемся изучать общую задачу, а только посмотрим, основываясь на физических соображениях, чего можно ожидать в отдельных случаях.
Фиг. 23.1. Эквивалентная схема реального сопротивления.
Известно, что ток, протекающий через реальное сопротивление, создает магнитное поле. Значит, каждое реальное сопротивление должно обладать и некоторой индуктивностью. Далее, если к сопротивлению приложена некоторая разность потенциалов, то на его концах должны возникнуть заряды, создающие нужные электрические поля. При изменении напряжения пропорционально меняется и заряд, так что у сопротивления имеется и какая-то емкость. Следует ожидать, что эквивалентная схема реального сопротивления должна иметь такой вид, как на фиг. 23.1. Если сопротивление хорошее, то его так называемые «паразитические элементы» L и С малы, так что при тех частотах, для которых оно предназначено, wL много меньше R, а l/wC — много больше R. Поэтому «паразитическими» элементами можно пренебречь. Когда же частота повышается, то не исключено, что значение этих элементов возрастет и сопротивление станет похожим на резонансный контур.
Реальная индуктивность также не совпадает с идеальной, импеданс которой равен iwL. У реальной проволочной катушки бывает какое-то сопротивление, и при низких частотах она фактически эквивалентна индуктивности, последовательно соединенной с сопротивлением (фиг. 23.2,а). Вы можете подумать, что в реальной катушке сопротивление и индуктивность объединены, что сопротивление распределено вдоль всего провода и перемешано с его индуктивностью.
Фиг. 23.2. Эквивалентная схема реальной индуктивности на малых частотах.
Фиг. 23.3. Эквивалентная схема реальной индуктивности на больших частотах.
Может быть, надо пользоваться контуром, смахивающим скорее на фиг. 23.2,6, где последовательно расставлено несколько маленьких R и L? Однако общий
импеданс такого контура просто равен SR+SiwL, а это то же самое, что дает более простая диаграмма, изображенная на фиг. 23.2, а.
Когда же частота повышается, то уже нельзя представлять реальную катушку в виде индуктивности плюс сопротивление. Начинают играть роль заряды, которые возникают на проводах, чтобы создать напряжение. Дело выглядит так, как будто между витками провода нанизаны маленькие конденсаторчики (фиг. 23.3, а). Можно попробовать приближенно представить реальную катушку в виде схемы фиг. 23.3, б. На низких частотах эту схему очень хорошо имитирует более простая (фиг. 23.3, в); это опять тот же резонансный контур, который давал нам высокочастотную модель сопротивления. Однако для более высоких частот более сложный контур фиг. 23.3, б подходит лучше. Так что чем точнее вы хотите представить истинный импеданс реальной физической индуктивности, тем больше надо взять идеальных элементов для построения искусственной модели.
Посмотрим теперь повнимательнее на то, что происходит в реальной катушке. Импеданс индуктивности изменяется как wL, значит, он на низких частотах обращается в нуль — «замыкается накоротко», и мы замечаем только сопротивление провода. Если частота начинает расти, то wL вскоре становится больше R и катушка выглядит почти как идеальная индуктивность. А если подняться по частоте еще выше, то начнут играть роль и емкости. Их импеданс пропорционален 1/wС; он велик на низких частотах. На достаточно низких частотах конденсатор выглядит как «разрыв в цепи», и если его с чем-нибудь запараллелить, то ток через него не пойдет. Но на высоких частотах ток предпочитает течь через емкости между витками, а не через индуктивность. Оттого-то ток в катушке прыгает с одного витка на другой, вовсе не помышляя крутить петлю за петлей там, где ему приходится преодолевать э. д. с. Хоть нам, может быть, и хотелось бы, чтобы ток шел по виткам катушки, но сам-то он выбирает путь полегче, переходя на дорогу наименьшего импеданса. Если это было бы нужно, то такой эффект можно было бы назвать «высокочастотным барьером» или чем-нибудь в этом роде. Похожие вещи происходят и в других науках. В аэродинамике, скажем, если вы захотите заставить что-то двигаться быстрее звука, а движение рассчитано на малые скорости, то у вас ничего не выйдет. Это не значит, что возник какой-то непроходимый «барьер»; просто надо изменить конструкцию. Точно так же наша катушка, которую первоначально сконструировали как «индуктивность», на очень высоких частотах работает не как индуктивность, а как что-то другое. Для больших частот надо изобретать уже новое устройство.
§ 2. Конденсатор на больших частотах
А теперь обсудим подробнее поведение конденсатора — геометрически идеального конденсатора,—когда частота становится все выше и выше. Мы проследим за изменением его свойств. (Мы предпочли рассматривать конденсатор, а не индуктивность, потому что геометрия пары обкладок много проще геометрии катушки.) Итак, вот конденсатор (фиг. 23.4, а), состоит он из двух параллельных круговых обкладок, соединенных с внешним генератором парой проводов. Если зарядить конденсатор постоянным током, то на одной из обкладок появится положительный заряд, на другой — отрицательный, а между обкладками будет однородное электрическое поле.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.