Стивен Хокинг - Кратчайшая история времени Страница 9
- Категория: Научные и научно-популярные книги / Физика
- Автор: Стивен Хокинг
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 31
- Добавлено: 2019-08-13 10:51:58
Стивен Хокинг - Кратчайшая история времени краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Стивен Хокинг - Кратчайшая история времени» бесплатно полную версию:Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
Стивен Хокинг - Кратчайшая история времени читать онлайн бесплатно
Глава седьмая
РАСШИРЯЮЩАЯСЯ ВСЕЛЕННАЯ
Если посмотреть на небо ясной безлунной ночью, то самыми яркими объектами, скорее всего, окажутся планеты Венера, Марс, Юпитер и Сатурн. А еще вы увидите целую россыпь звезд, похожих на наше Солнце, но расположенных намного дальше от нас. Некоторые из этих неподвижных звезд в действительности едва заметно смещаются друг относительно друга при движении Земли вокруг Солнца. Они вовсе не неподвижны! Это происходит, потому что такие звезды находятся сравнительно близко к нам. Вследствие движения Земли вокруг Солнца мы видим эти более близкие звезды на фоне более далеких из различных положений. Тот же самый эффект наблюдается, когда вы едете на машине, а деревья у дороги словно бы изменяют свое положение на фоне ландшафта, уходящего к горизонту (рис. 14). Чем ближе деревья, тем заметнее их видимое движение. Такое изменение относительного положения называется параллаксом. В случае со звездами это настоящая удача для человечества, потому что параллакс позволяет нам непосредственно измерить расстояние до них.
Рис. 14. Звездный параллакс.Движетесь ли вы по дороге или в космосе, относительное положение ближних и дальних тел изменяется по мере вашего движения. Величина этих изменений может быть использована для определения расстояния между телами.
Самая близкая звезда, Проксима Центавра, удалена от нас примерно на четыре световых года или сорок миллионов миллионов километров. Большинство других звезд, видимых невооруженным глазом, находятся в пределах нескольких сотен световых лет от нас. Для сравнения: от Земли до Солнца всего восемь световых минут! Звезды разбросаны по всему ночному небу, но особенно густо рассыпаны они в полосе, которую мы называем Млечным Путем. Уже в 1750 г. некоторые астрономы высказывали предположение, что вид Млечного Пути можно объяснить, если считать, что большинство видимых звезд собраны в дискообразную конфигурацию, наподобие тех, что мы теперь называем спиральными галактиками. Только через несколько десятилетий английский астроном Уильям Гершель подтвердил справедливость этой идеи, кропотливо подсчитывая число звезд, видимых в телескоп на разных участках неба. Тем не менее полное признание эта идея получила лишь в двадцатом столетии. Теперь мы знаем, что Млечный Путь — наша Галактика — раскинулся от края до края приблизительно на сто тысяч световых лет и медленно вращается; звезды в его спиральных рукавах совершают один оборот вокруг центра Галактики за несколько сотен миллионов лет. Наше Солнце — самая обычная желтая звезда средних размеров — находится у внутреннего края одного из спиральных рукавов. Определенно, мы проделали длинный путь со времен Аристотеля и Птолемея, когда люди считали Землю центром Вселенной.
Современная картина Вселенной начала прорисовываться в 1924 г., когда американский астроном Эдвин Хаббл доказал[7], что Млечный Путь не единственная галактика. Он открыл, что существует множество других звездных систем, разделенных обширными пустыми пространствами. Чтобы подтвердить это, Хаббл должен был определить расстояние от Земли до других галактик. Но галактики находятся так далеко, что, в отличие от ближайших звезд, действительно выглядят неподвижными. Не имея возможности использовать параллакс для измерения расстояний до галактик, Хаббл вынужден был применить косвенные методы оценки расстояний. Очевидной мерой расстояния до звезды является ее яркость. Но видимая яркость зависит не только от расстояния до звезды, но также и от светимости звезды — количества испускаемого ею света. Тусклая, но близкая к нам звезда затмит самое яркое светило из отдаленной галактики. Поэтому, чтобы использовать видимую яркость в качестве меры расстояния, мы должны знать светимость звезды.
Светимость ближайших звезд можно рассчитать по их видимой яркости, поскольку благодаря параллаксу мы знаем расстояние до них. Хаббл заметил, что близкие звезды можно классифицировать по характеру испускаемого ими света. Звезды одного класса всегда имеют одинаковую светимость. Далее он предположил, что если мы обнаружим звезды этих классов в далекой галактике, то им можно приписать ту же светимость, какую имеют подобные звезды поблизости от нас. Располагая такой информацией, несложно вычислить расстояние до галактики. Если вычисления, проделанные для множества звезд в одной и той же галактике, дают одно и то же расстояние, то можно быть уверенным в правильности нашей оценки. Таким способом Эдвин Хаббл вычислил расстояния до девяти различных галактик[8].
Сегодня мы знаем, что звезды, видимые невооруженным глазом, составляют ничтожную долю всех звезд. Мы видим на небе примерно 5000 звезд — всего лишь около 0,0001% от числа всех звезд нашей Галактики, Млечного Пути. А Млечный Путь — лишь одна из более чем сотни миллиардов галактик, которые можно наблюдать в современные телескопы. И каждая галактика содержит порядка сотни миллиардов звезд. Если бы звезда была крупинкой соли, все звезды, видимые невооруженным глазом, уместились бы в чайной ложке, однако звезды всей Вселенной составили бы шар диаметром более тринадцати километров.
Звезды настолько далеки от нас, что кажутся светящимися точками. Мы не можем различить их размер или форму. Но, как заметил Хаббл, есть много различных типов звезд, и мы можем различать их по цвету испускаемого ими излучения[9]. Ньютон обнаружил, что, если солнечный свет пропустить через трехгранную стеклянную призму, он разложится на составляющие цвета, подобно радуге (рис. 15). Относительная интенсивность различных цветов в излучении, испускаемом неким источником света, называется его спектром. Фокусируя телескоп на отдельной звезде или галактике, можно исследовать спектр испускаемого ими света.
Рис. 15. Звездный спектр.Анализируя спектр излучения звезды, можно определить как ее температуру, так и состав атмосферы.
В числе прочего излучение тела позволяет судить о его температуре. В 1860 г. немецкий физик Густав Кирхгоф установил, что любое материальное тело, например звезда, будучи нагретым, испускает свет или другое излучение, подобно тому как светятся раскаленные угли. Свечение нагретых тел обусловлено тепловым движением атомов внутри них. Это называется излучением черного тела (несмотря на то что сами нагретые тела не являются черными). Спектр чернотельного излучения трудно с чем-нибудь перепутать: он имеет характерный вид, который изменяется с температурой тела (рис. 16). Поэтому излучение нагретого тела подобно показаниям термометра. Наблюдаемый нами спектр излучения различных звезд всегда похож на излучение черного тела, это своего рода извещение о температуре звезды.
Рис. 16. Спектр излучения черного тела.Все тела — а не только звезды — испускают излучение вследствие теплового движения составляющих их микроскопических частиц. Распределение излучения по частоте характеризует температуру тела.
Если внимательно изучить звездный свет, он сообщит нам еще больше информации. Мы обнаружим отсутствие некоторых строго определенных цветов, причем у разных звезд они будут разными. И поскольку мы знаем, что каждый химический элемент поглощает характерный для него набор цветов, то, сравнивая эти цвета с теми, что отсутствуют в спектре звезды, мы сможем точно определить, какие элементы присутствуют в ее атмосфере.
В 1920-е гг., когда астрономы начали изучать спектры звезд в других галактиках, было обнаружено нечто очень интересное: это оказались те же самые характерные наборы отсутствующих цветов, что и у звезд в нашей собственной галактике, но все они были смещены к красному концу спектра, причем в одинаковой пропорции. Физикам смещение цвета или частоты известно как эффект Доплера.
Мы все знакомы с тем, как это явление воздействует на звук. Прислушайтесь к звуку проезжающего мимо вас автомобиля. Когда он приближается, звук его двигателя или гудка кажется выше, а когда машина уже проехала мимо и стала удаляться, звук понижается. Полицейский автомобиль, едущий к нам со скоростью сто километров в час, развивает примерно десятую долю скорости звука. Звук его сирены представляет собой волну, чередование гребней и впадин. Напомним, что расстояние между ближайшими гребнями (или впадинами) называется длиной волны. Чем меньше длина волны, тем большее число колебаний достигает нашего уха каждую секунду и тем выше тон, или частота, звука.
Эффект Доплера вызван тем, что приближающийся автомобиль, испуская каждый следующий гребень звуковой волны, будет находиться все ближе к нам, и в результате расстояния между гребнями окажутся меньше, чем если бы машина стояла на месте. Это означает, что длины приходящих к нам волн становятся меньше, а их частота — выше (рис. 17). И наоборот, если автомобиль удаляется, длина улавливаемых нами волн становится больше, а их частота — ниже. И чем быстрее перемещается автомобиль, тем сильнее проявляется эффект Доплера, что позволяет использовать его для измерения скорости.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.