Ричард Фейнман - 2a. Пространство. Время. Движение Страница 9
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 18
- Добавлено: 2019-08-13 11:16:14
Ричард Фейнман - 2a. Пространство. Время. Движение краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 2a. Пространство. Время. Движение» бесплатно полную версию:Ричард Фейнман - 2a. Пространство. Время. Движение читать онлайн бесплатно
Это, конечно, то же самое решение, которое уже было нами получено ранее. Поскольку m(w20-w2) — действительное число, то фазовые углы F и х совпадают (или отличаются на 180°, если (w2>w20). Об этом тоже уже говорилось. Модуль х, который определяет размах колебаний, связан с модулем F множителем 1/m(w20-w2); этот множитель становится очень большим, если w приближается к w0. Таким образом, можно достичь очень сильного отклика, если приложить к осциллографу нужную частоту w (если с нужной частотой толкать подвешенный на веревочке маятник, то он поднимается очень высоко).
§ 2. Вынужденные колебания с торможением
Итак, мы можем решить задачу о колебательном движении, пользуясь изящной математикой. Однако изящество немногого стоит, когда задача и так решается просто; математику надо использовать тогда, когда решаются более сложные задачи. Перейдем поэтому к одной из таких задач, которая, кроме того, ближе к действительности, чем предыдущая. Из уравнения (23.5) следует, что, если w в точности равна w0, амплитуда колебания становится бесконечной. Этого, конечно, не может быть, потому что многие вещи, например трение, ограничивают амплитуду, а мы их не учитывали. Изменим теперь (23.2) так, чтобы учесть трение.
Сделать это обычно довольно трудно, потому что силы трения очень сложны. Однако во многих случаях можно считать, что сила трения пропорциональна скорости движения объекта. Именно такое трение препятствует медленному движению тела в масле или другой вязкой жидкости. Когда предмет стоит на месте, на него не действуют никакие силы, но чем скорее он движется и чем быстрее масло должно обтекать этот предмет, тем больше сопротивление. Таким образом, мы предположим, что в (23.2), кроме уже написанных членов, существует еще один — сила сопротивления, пропорциональная скорости: Ff=-c(dx/dt). Удобно записать с как произведение m на другую постоянную g, это немного упростит уравнение.
Мы уже проделывали такой фокус, когда заменяли k на mw20, чтобы упростить вычисления. Итак, наше уравнение имеет вид
или, если положить с=mg и k=mw20 и поделить обе части на m,
Это самая удобная форма уравнения. Если g очень мало, то мало и трение, и, наоборот, большие значения g соответствуют громадному трению. Как решать это новое линейное уравнение? Предположим, что внешняя сила равна F0cos(wt+D); можно было бы подставить это выражение в (23.6а) и попытаться решить полученное уравнение, но мы применим наш новый метод. Представим F как действительную часть , a x — как действительную часть и подставим эти комплексные числа в (23.6а). Собственно говоря, и подставлять-то нечего; внимательно посмотрев на (23.6а), вы тут же скажете, что оно превратится в
[Если бы мы попытались решить (23.6а) старым прямолинейным способом, то оценили бы по достоинству магический «комплексный» метод.] Поделив обе части уравнения на exp(iwt), найдем отклик осциллятора на силу
Итак, отклик x равен силе F, умноженной на некоторый множитель. Этот множитель не имеет ни названия, ни какой-то своей собственной буквы, и мы будем обозначать его буквой R:
тогда
Этот множитель можно записать либо как p+iq, либо как рехр(iq). Запишем его в виде рехр(iq) и посмотрим, к чему это приведет. Внешняя сила — это действительная часть числа F0ехр(iD)ехр(iwt), она равна F0cos(wt+D). Уравнение (23.9) говорит нам, что отклик равен ; мы условились
писать R в виде R=rехр(iq); следовательно,
Вспомним (об этом уже говорилось), что физическое значение х, равное действительной части комплексного числа х, равно действительной части rF0exp[i(q+D)]exp(iwt). Но r и F0 — действительны, а действительная часть ехр[i(q+D+wt)] — это просто cos(wt+D+q). Таким образом,
x=rF0cos(wt+D+q). (23.10)
Это значит, что амплитуда отклика равна амплитуде силы F, умноженной на коэффициент усиления r; мы нашли «размах» колебаний. Но это еще не все: видно, что х колеблется не в такт с силой; фаза силы равна D, а у x; она сдвинута на дополнительную величину q. Следовательно, r и q — это величина и фазовый сдвиг отклика.
Найдем теперь значение r. Квадрат модуля любого комплексного числа равен произведению этого числа на комплексно сопряженное, т. е.
Можно найти и фазовый угол q
значит,
Знак минус возник оттого, что tg(-q) =-tgq. Угол q отрицателен при всех значениях w, т. е. смещение х отстает по фазе от силы F.
На фиг. 23.2 показано, как изменяется r2 при изменении частоты (r2 для физика интереснее, чем r, потому что r2 пропорционально квадрату амплитуды, а значит, и той энергии, которую передает осциллятору внешняя сила).
Фиг.23.2. График зависимости r2 от w.
Очевидно, что если g мало, то основной член в (23.11) — это 1/(w20-w2)2, и отклик стремится к бесконечности, если w приближается к w0. Но эта «бесконечность» — не настоящая бесконечность, потому что даже если w=w0, то все еще остается слагаемое 1/g2w2. Зависимость сдвига фазы от частоты изображена на фиг. 23.3.
Фиг. 23.3. График зависимости q от w.
Иногда приходится иметь дело с формулой, немного отличающейся от (23.8); она тоже называется «резонансной» и, несмотря на некоторое отличие от (23.8), описывает те же самые явления. Дело в том, что если значение g очень мало, то наиболее интересная область резонансной кривой лежит около частоты w=w0, а здесь при малых g формулу (23.8) с большой степенью точности можно заменить приближенной формулой. Поскольку w20-w2=(w0-w)(w0+w), то для w, очень близких к w0, разность квадратов почти равна 2w0(w0-w), a gw можно заменить на gw0. Значит, w20-w2+gw»2w0(w0-w+ig/2) и
Легко найти и r2:
А теперь решите сами такую задачу: с увеличением частоты значение r2 сначала растет, достигает при w0 максимума, а потом снова убывает. На каком расстоянии от w0 расположены частоты, которым соответствуют значения r2, вдвое меньшие максимального? Покажите, что при очень малом g эти точки отстоят друг от друга на расстояние Dw=g. Это значит, что резонанс делается более острым по мере того, как влияние трения становится все слабее и слабее.
Другой мерой ширины резонанса может служить «добротность» q=wo/g (чем уже резонанс, тем больше Q); если Q=1000, то по шкале частот ширина резонансной кривой равна всего 0,001. Резонансной кривой на фиг. 23.2 соответствует Q=5.
Явление резонанса важно потому, что оно проявляется довольно часто; описанию некоторых видов этих проявлений мы посвятим остаток главы.
§ 3. Электрический резонанс
Простейшие и самые широкие технические применения резонанс нашел в электричестве. Имеется довольно много устройств, из которых собираются электрические цепи. Их часто называют пассивными элементами цепи, и бывают они трех типов, хотя в каждый элемент одного типа всегда примешано чуточку элементов других типов. Прежде чем подробно описать эти элементы, заметим, что наше представление о механическом осцилляторе как о массе, подвешенной к концу пружины, всего лишь приближение. В «массе» сосредоточена вовсе не вся масса системы: пружина тоже обладает какой-то массой, пружина тоже инерционна. Точно так же «пружина» не состоит из одной пружины, масса тоже немного упруга, а не абсолютно тверда, как это может показаться. Подпрыгивая вверх и вниз, она слегка изгибается под толчками пружины. Так же обстоит дело и в электричестве. Расположить все предметы по «элементам цепи» с чистыми, идеальными характеристиками можно только приближенно. Так как у нас нет времени обсуждать пределы таких приближений, мы просто предположим, что они допустимы.
Итак, о трех элементах цепи. Первый называется емкостью (фиг. 23.4); в качестве примера емкости могут служить две металлические пластинки, разделенные тонким слоем диэлектрика.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.