Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей Страница 9
- Категория: Научные и научно-популярные книги / Физика
- Автор: Семихатов Алексей
- Страниц: 61
- Добавлено: 2024-12-27 21:30:07
Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей» бесплатно полную версию:Квантовая механика – самый точный из известных человечеству способов описания мира на той фундаментальной глубине, которая определяет его структуру, но недоступна прямому наблюдению. Только благодаря квантовой природе удается существовать атомам, людям, звездам и почти всему остальному. Квантовые эффекты, которые уже задействованы в технологиях, максимально приближаются к нашим представлениям о чудесах. Но в силу самого своего устройства квантовая механика оставляет недосказанности в отношении поведения квантовых объектов и свойств реальности.
На заре второго квантового столетия Алексей Семихатов, автор бестселлера «Всё, что движется», предлагает последовательное изложение современного состояния квантовой механики. Каковы принципиальные особенности квантового мира и какой ценой их можно примирить с интуицией? По каким правилам развиваются квантовые системы во времени и как в это развитие вмешиваются вероятности? Как различные интерпретации квантовой механики подталкивают нас к глубоко философским заключениям о возможном устройстве реальности – от параллельных вселенных до разрывов в восприятии? И как привычная нам реальность возникает из чуждой ей квантовой? Что все-таки делает квантовый компьютер, что и как вовлекается в квантовую запутанность и почему квантовым объектам приходится существовать без некоторых свойств? Оказывается, о квантовой механике можно всерьез говорить понятным языком, а обсуждение ее сложных мест делает этот разговор только интереснее.
Согласно квантовым законам и только лишь благодаря квантовым законам существуют атомы, из которых состоим и мы сами, и почти все на планете Земля; благодаря квантовым законам горит Солнце; квантовые процессы определяют взаимодействие света и вещества; весь наш мир собран из квантовых объектов. Но фундаментальная квантовая природа в глубине мира остается в основном незаметной из-за мельтешения огромного числа мельчайших участников. По отдельности они ведут себя квантово и взаимодействуют друг с другом тоже по квантовым правилам, но все вместе образуют привычный нам наблюдаемый, и почти ничем не квантовый, мир…. Парадоксальным образом привычные свойства окружающего мира основаны на чуждых ему квантовых явлениях.
Особенности
26 иллюстраций, нарисованных специально для книги. Иллюстратор Нюся Красовицкая предложила философско-метафорическое видение предмета, определяющая черта которого – отсутствие наглядности.
Квантовая механика не похожа на другие физические теории. Она поразительно успешна на практике, а ее логическая структура приводит к интригующим проблемам философского порядка. Ее вычислительная схема основана на строгих формальных предписаниях, но знаменательным образом обходит стороной вопрос о том, что же физически происходит в пространстве-времени. И в соответствии со своей собственной логикой квантовая механика ставит перед нами вопросы об устройстве реальности, но не затрудняет себя однозначными ответами.
Для кого
Для тех, кому интересно, какие правила игры, радикально отличающиеся от привычных, лежат в самой основе мира и определяют устройство и нас самих, и почти всего, что нас окружает.
Мир выглядел бы совершенно безумным, если бы в нашем восприятии отражалась даже малая часть экзотически запутанных состояний, которые в огромном количестве возникают в ходе эволюции волновой функции под управлением уравнения Шрёдингера. Общим местом была бы неопределенность положения и ориентации в пространстве; объекты находились бы в самых немыслимых комбинациях запутанных свойств.
Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей читать онлайн бесплатно
Возвращаясь к энергии, состоящей из двух враждующих частей и ставшей поэтому не числом, а операцией: вражда между двумя ее частями в полной мере разворачивается при наличии притяжения между атомным ядром и электроном, потому что притяжение зависит от расстояния, т. е. в общем от положения в пространстве, в то время как энергия движения зависит от скорости. Две «конфликтующие стороны» преобразуют математические состояния очень по-разному: когда одна сторона вызывает незначительные изменения, другая «назло» – очень существенные, и наоборот. Энергия в результате становится в математическом пространстве свирепым преобразователем, от которого (почти) никому нет спасения.
Такая беда с энергией «мешает» существованию атома, поскольку энергия изолированного атома не должна меняться со временем (иначе с атомом что-нибудь происходит), а для этого уж во всяком случае обязана иметь какое-то численное значение!
«Мешает» действительно настолько сильно, что собрать атом из ядра и электронов невозможно почти никогда – за исключением специальных случаев «примирения». Оно наступает, если среди математических состояний, подвергаемых преобразованиям, найдется такое, что две враждующие части энергии, действуя совместно, почти его не изменяют. Что означает «почти», сказано в следующем абзаце, а случиться подобное может, только если энергия каждого электрона принимает одно из специальных (численных) значений.
Список разрешенных значений энергии возникает как условие «примирения» враждующих вкладов в энергию электрона в атоме в исключительных случаях. Для этого необходимо, чтобы существовал специальный математический объект, которому удается почти не меняться под действием энергии как операции, а именно, отделаться просто умножением на число. (Это и правда мягкий вариант изменения; в качестве бытового примера можно сравнить изменение текста из-за того, что размер всех шрифтов в нем умножен на некоторое число, с пропусканием страниц через шредер.) Появляющееся таким образом число и становится энергией электрона в атоме. Так формируется весь список энергий, при которых только и может существовать атом, – и возникает дискретность, которую мы обсуждали в предыдущей главе.
Для сравнения, у электрона, свободно летящего в пространстве, никакой дискретности нет; его энергия целиком сводится к энергии движения. Она выражается только через скорость, враждовать ей в данном случае не с кем, и никаких отдельных разрешенных значений энергии движения не возникает. Дискретно многое, но не всё.
В истории создания квантовой механики можно при желании усмотреть символизм, перекликающийся с характерной для нее самой «враждой», т. е. наличием несовместимых величин. Поначалу такими же несовместимыми выглядели две идеи, высказанные двумя разными людьми, но при этом – несмотря на кажущуюся непримиримость самих идей и приближающиеся к враждебным отношения между их авторами – вместе составившие основу квантовой механики.
Противостоящие одна другой идеи принадлежали Гайзенбергу (которого немало вдохновлял Бор) и Шрёдингеру (которого вдохновляло нечто иное).
Создатели нового описания мира пришли к осознанию, что структуру атома нельзя постичь, распространяя на него привычные модели и полагаясь на интуицию и «само собой разумеющиеся» факты. Все, что «само собой разумеется», – обобщение опыта, накопленного в классическом мире, и сколь бы естественными ни казались нам некоторые вещи, их нельзя переносить в квантовый мир без абсолютной необходимости. Рассуждения без привлечения «само собой разумеющегося» требовали немалой дисциплины мышления, и первым тут достиг успеха Гайзенберг (июнь 1925 г.). Он смог сформулировать правила описания квантовых объектов, очень строго следя за тем, чтобы иметь дело только с тем, что можно было в принципе извлечь из экспериментов, и не привнося никаких «самоочевидных» идей. Электрон в атоме, по Гайзенбергу, вел существование, привязанное только к переходам между дискретными значениями энергии – только тогда он заявлял о себе, излучая или поглощая порцию света определенной длины волны. Гайзенберг создал целую систему для обращения с дискретными величинами вместо обычных непрерывных. На ее основе удалось вычислить – математически вывести – энергетические ступеньки (разрешенные значения энергии) в атоме водорода.
Атом был «спасен»: электрон не оказывался в объятиях атомного ядра, отдав всю свою энергию в виде света (проблема, о которой мы говорили в главе 2), потому что в списке разрешенных значений имелась наименьшая энергия. С нее начинается список, и электрону, который ее приобрел, просто «некуда бежать», отдавая энергию.
Формализм получился достаточно громоздкий, но это тем не менее был колоссальный прорыв. Дискретность присутствовала в нем с самого начала, и самой существенной способностью электрона в атоме оказывалась способность совершать «скачки» между разрешенными значениями энергии. Происходящее же между скачками представлялось неважным; говорить о нем даже и не следовало: в условиях недоступности прямого наблюдения ему приписывалось не совсем полноценное существование.
Справедливости ради надо сказать, что эти отчасти философские идеи о характере существования электронов в атоме добавились к математическому аппарату не сразу и заведомо не одновременно с написанием правильных формул, позволявших делать вычисления. Возможность вычислять была на первом месте, и согласие результатов с наблюдениями служило обоснованием формул. Формулы тем не менее все же несли в себе вопрос о своем смысле. Идеи по их интерпретации набирали силу в течение нескольких лет, и существенную роль тут сыграл старший коллега и до некоторой степени наставник (очень молодого тогда) Гайзенберга – Бор. Он же взял на себя роль «разъяснителя» свойств квантового мира и наших отношений с ним для научного сообщества. Именно отношения исследователя и природы все больше выходили на передний план, тогда как физическому миру «самому по себе» Бор отказывал в полноценном существовании; обсуждать следовало лишь то, что можно наблюдать, поэтому далеко не про все в квантовом мире имеет смысл спрашивать и не всему разумно искать «объяснения»{11}.
Совсем другую идею по поводу того, как описывать квантовые явления, примерно с полугодовым отставанием от Гайзенберга высказал Шрёдингер. Он предложил (рубеж 1925 и 1926 гг.) непрерывную схему описания квантовых явлений вообще. На первый взгляд, согласно идеям Шрёдингера, квантовые объекты слагались из чего-то типа разлитых в пространстве волн – которые решительно не испытывали никаких скачков, а эволюционировали с течением времени по закону, который Шрёдингер же и сформулировал (исключительно удачно придумал) и который превратился затем в основное вычислительное средство квантовой механики под названием уравнения Шрёдингера.
Начал Шрёдингер тоже с того, что применил свое уравнение для математического вывода разрешенных значений энергии в атоме водорода (и с тех пор все тоже так поступают). Однако в его подходе было гораздо яснее, как действовать – по крайней мере, как записать нужные уравнения – и для более сложных атомов. Математические «чудеса», благодаря которым из непрерывного (чего-то типа волны) получалось дискретное (энергетические ступеньки, согласующиеся с экспериментом), были красивы и содержательны (свирепая энергия все-таки производит определенное число, действуя на очень специальный математический объект, как вкратце обсуждалось выше).
Однако не все шло гладко. Очень быстро выяснилось, что с задачей стать «материалом» для построения квантовых объектов эти вроде-бы-волны не справляются. Фундаментальная причина состояла в том, что они в действительности не бегают по пространству таким образом, что каждому квантовому объекту отвечает своя волна. Это обстоятельство глубже и сложнее, чем может показаться на первый взгляд. Да, в числе мотиваций самого Шрёдингера была идея, что объекты, считающиеся частицами (электроны), проявляют волновые свойства. Эту идею несколько ранее высказал де Бройль, а немного позднее, в 1927 г., она стала экспериментальным фактом. Но при этом не верно, что в системе из нескольких электронов каждый представлен своей волной. Ничего подобного в схеме, предложенной Шрёдингером, нет. Там необходимо сразу указать столько точек в пространстве, сколько у вас электронов, и только тогда будет математически определена «величина» (амплитуда) этой вроде-бы-волны – и относиться она будет ко всем электронам, вместе взятым. Связь с событиями в отдельных точках физического пространства при этом теряется.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.