Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел Страница 10

Тут можно читать бесплатно Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел. Жанр: Научные и научно-популярные книги / Научпоп, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел

Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел» бесплатно полную версию:
При жизни Карл Фридрих Гаусс получил титул короля математиков. Личность этого ученого можно сравнить с личностью другого его гениального современника и соотечественника — Вольфганга Амадея Моцарта. Оба были вундеркиндами, которым покровительствовали и помогали получить образование представители власти. Но в отличие от композитора, Гауссу повезло прожить долгую и спокойную жизнь. Он сделал много открытий в таких научных областях, как геометрия, астрономия, физика и статистика.Прим. OCR: Знак "корень квадратный" заменен на SQRT(), врезки обозначены жирным шрифтом.

Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел читать онлайн бесплатно

Антонио Лизана - Если бы числа могли говорить. Гаусс. Теория чисел - читать книгу онлайн бесплатно, автор Антонио Лизана

Значимость этой системы проявляется, когда речь идет о более сложных вычислениях. Если нужно вычислить 7³ = 7 · 7 · 7, вместо того, чтобы умножать 49 на 7, Гаусс мог ограничиться тем, чтобы умножить 7 на результат последнего сравнения по модулю, то есть 1, произведение будет равно, без сомнения, 7. Так, Гаусс знал, что произведение — это число, которое при делении на 12 в остатке дает 7. Этот метод может быть применен на больших числах, которые превышают возможность вычисления. Не имея ни малейшего понятия о значении 799, с помощью сравнений по модулю ученый знал, что если разделить это число на 12, в остатке получится 7. Исследования Гаусса в этой области арифметики были революционными для математики начала XIX века и позволили ученым обнаруживать структуры, до этого скрытые. Сегодня арифметика сравнений по модулю, также называемая модульной арифметикой, является фундаментальной для безопасности в интернете, где сравнения используются для величин, превышающих количество атомов во Вселенной.

Также преимущество этой записи состоит в том, что она напоминает форму, в которой мы записываем алгебраические выражения. Вместо арифметической делимости, описание которой может быть громоздким, она дает краткую запись, благодаря которой можно складывать, вычитать и умножать сравнения, если их модуль одинаков, а также решать уравнения вида: ах + b == c (mod m).

В заключении к двум первым разделам Гаусс применил эти методы к историческим проблемам, таким как вычисление знаменитой функции φ Эйлера. Функция φ(N) определяется как количество целых положительных чисел, меньших или равных N и взаимно простых с Ν. В математике два числа называются взаимно простыми, если у них нет общих делителей, то есть их наибольший общий делитель — 1. Например, 9 = З² является взаимно простым с 10 = 5 · 2, и его нужно было бы найти при вычислении φ( 10). Множество φ( 10) состоит, следовательно, из четырех элементов (1, 3, 7 и 9), и значит, φ( 10) = 4.

Гаусс вывел общую формулу для вычисления φ(Ν). Если мы разложим N на простые множители ρ1,ρ2, ...,рn, то получим N = р1m1, p2m2 · ... · pnmn, где pi простые числа, a mi — кратность их повторения. Формула имеет вид:

Если применить формулу к N= 10, то

чего и следовало ожидать.

Формула зависит от простых чисел, на которые раскладывается N, а не от кратности их повторения. В случае с N = 180 получается, что 180 = 2² · З² · 5, следовательно,

Раздел заканчивается доказательством основной теоремы о многочленных сравнениях. Так, сравнение степени m,

amxm + am-1xm-1 + ··· +а1x + b == 0 (mod р),

модуль которой р — простое число, не являющееся делителем аm, может быть решена не более чем m различными способами или не может иметь больше m корней, не сравнимых по модулю р.

В разделе III, озаглавленном De residuis Potestatum («О степенных вычетах»), говорится о квадратичных вычетах и вычетах большей степени. Если заданы целые числа тип, где m не является делителем n, и если существует такое число x, что х² = m (mod n), говорят, что m — квадратичный вычет по модулю n; в противном случае говорят, что m — квадратичный невычет по модулю n. Например: 13 — квадратичный вычет по модулю 17, поскольку уравнение х² == 13 (mod 17) имеет в качестве решений х = 8, 25, 42, поскольку 8² = 64, что при делении на 17 дает 13 в остатке, 25² = 625, что при делении на 17 вновь дает 13 в остатке, и то же самое происходит с 42² = 1764.

В разделе доказывается малая теорема Ферма: np-1 == 1 (mod p), где р — простое число, не являющееся делителем n. То есть если р — простое число, которое не является делителем n, то np-1 всегда делится на р. Для случая n = 8 np = 5 получается, что 84-1 = 4095, а это делится на 5. Для получения этого результата Гаусс воспользовался формулой бинома Ньютона, сформулированной для сравнений. Следствием является теорема Вильсона, в которой говорится, что если задано простое число р, то

1·2·3·...·(p-1) = (p-1)! == -1 (mod p).

Произведение всех чисел, меньших заданного простого, при добавлении единицы всегда делится на это число. Если, например, мы выберем 7, то 6! = 720, а 721 делится на 7.

Три первых раздела представляют собой системное введение в теорию чисел и готовят почву для разделов IV и V.

Главный итог раздела IV — это знаменитый квадратичный закон взаимности. Теорема (в виде гипотезы) была сформулирована Эйлером в 1742 году в его письме Гольдбаху. Полвека спустя, в 1798 году, Лежандр опубликовал доказательство, основанное на недоказанных аргументах, так что первое правильное доказательство теоремы принадлежало Гауссу, который называл ее золотой теоремой. В книге Гаусса она сформулирована в следующем виде:

Если р — простое число вида 4n + 1, то +p — вычет (или невычет) по модулю любого простого числа, которое, взятое в положительной форме, является вычетом (или невычетом) по модулю p. Если р имеет вид 4n + 3, то -р обладает тем же свойством.

Скобки в теореме указывают на то, что результат может быть прочитан при исключении содержимого скобок или при включении их при замене непосредственно предшествующего выражения. Проще говоря, существует взаимность между парой сравнений х² == q (mod р) и х² == р (mod q), где р и q — простые числа. То есть если мы можем проверить первое сравнение (х² == q (mod p)), то автоматически проверяется и второе (х² == р (mod q)); и если первое неверно, то неверно и второе. Есть одно исключение, которое состоит в том, что как p, так и q в остатке дают 3, когда делятся на 4; в этом случае одно и только одно из сравнений верно.

Доказательство Гаусса начинается с эвристических соображений, результатом чего является закон для определенных простых чисел. Затем ученый переходит, по индукции, к доказательству общего случая. Это доказательство очень обширное, в нем отдельно рассматриваются восемь различных случаев. Петер Густав Дирихле, который был учеником немецкого математика и одним из главных читателей его книги, упростил доказательство, сократив число случаев до двух. Гаусс заканчивает раздел другими результатами, выводимыми из его теоремы. Только за это доказательство он достоин звания одного из самых талантливых математиков своего времени, но в этой работе будут и другие, не менее важные идеи.

Раздел V — центральная часть книги. Он посвящен выражениям типа F = ах² + 2bху + су², где а,b,с — целые числа; эти выражения были названы Эйлером квадратичными формами. Существенная часть этого раздела не является оригинальной — в ней собраны и унифицированы результаты Лагранжа по этой теме.

Проблема, которую решает Гаусс, — это определение того, какие целые числа М могут быть представлены в виде выражения ах² + 2 bху + су² = М, где x и y — целые числа. Обратная, и более интересная, проблема, которую он также решил, заключается в том, чтобы при заданных М и а, b и с найти значения x и y, которые определяют значение М в квадратичной форме. Для этого Гауссу потребовалось классифицировать квадратичные формы и подойти к ним дифференцированно. С этой целью он использовал два базовых алгебраических свойства квадратичной формы. Гаусс установил классификацию квадратичных форм и их свойств на основе дискриминантов.

В этот раздел также включено доказательство теоремы, относящейся к треугольным числам, о которой мы уже говорили.

В разделе VI представлены многочисленные примеры применения понятий, разработанных в предыдущем разделе. Основные затрагиваемые вопросы — это разложение на простые дроби; то есть разложение дроби на сумму дробей со знаменателями, образованными от знаменателя исходной дроби. Эта техника имеет широкое применение в интегралах рациональных функций, то есть тех, которые могут быть представлены в виде частного многочленов. Также речь идет о периодических десятичных дробях и решении сравнений собственными методами Гаусса. Другая интересная тема — это поиск критериев, которые позволили бы выделять простые числа без трудоемких вычислений. Как мы увидим, изучение простых чисел сопровождало ученого всю его жизнь, но мы рассмотрим это отдельно.

ДИСКРИМИНАНТ МНОГОЧЛЕНА

В алгебре дискриминант многочлена — это некое выражение из коэффициентов данного многочлена, которое равно нулю тогда и только тогда, когда у многочлена множественные корни. Например, дискриминант квадратного многочлена ах² + bх + с равен b²-4ac, поскольку формула корня данного многочлена следующая:

то есть достаточно, чтобы дискриминант в том виде, в каком мы его определили, был равен нулю, чтобы получить единое двойное решение. В случае с многочленом х²-4х + 4, поскольку у него нулевой дискриминант, мы получаем один двойной корень (2), так что, применив основную теорему алгебры, получаем х²-4х + 4 = (х - 2)².

Раздел VII — самая известная часть «Исследований», оказавшая огромное влияние на развитие науки. В этом разделе шла речь о делении круга с помощью линейки и циркуля — классической теме математики. Очевидно, что эта задача связана с построением правильных многоугольников, так что Гаусс включил сюда свое знаменитое построение многоугольника с 17 сторонами, найдя достаточное условие для построения правильного многоугольника с помощью линейки и циркуля.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.