Eugenio Aguilar - Наука. Величайшие теории: выпуск 7: Эврика! Радость открытия. Архимед Страница 14
- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Eugenio Aguilar
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 24
- Добавлено: 2019-02-04 16:01:33
Eugenio Aguilar - Наука. Величайшие теории: выпуск 7: Эврика! Радость открытия. Архимед краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Eugenio Aguilar - Наука. Величайшие теории: выпуск 7: Эврика! Радость открытия. Архимед» бесплатно полную версию:Архимед из Сиракуз жил в эпоху войн, поэтому не удивительно, что часть своего дарования он направил на создание машин, призванных защитить его родной город. Ученый внес серьезный вклад в эту сферу деятельности, впрочем, как и во все другие, входящие в круг его интересов: математику, физику, инженерное дело, астрономию... Он вычислил площадь сегмента параболы с помощью метода, который можно считать предвестником интегрального исчисления. Он открыл физические законы работы рычага и даже осмелился сосчитать количество песчинок, которыми можно заполнить Вселенную, — такое огромное число, что Архимеду пришлось изобретать собственный способ его записи! Но более всего древнегреческого ученого прославило открытие закона гидростатики, носящего теперь его имя. Данный закон, без сомнения, является одним из самых важных в истории, и он по праву удостоился того радостного возгласа, который с тех пор стал символом научного открытия: «Эврика!»Прим. OCR: Врезки текста выделены жирным шрифтом. Символ "корень квадратный" заменен в тексте SQRT().
Eugenio Aguilar - Наука. Величайшие теории: выпуск 7: Эврика! Радость открытия. Архимед читать онлайн бесплатно
Трисекция угла с помощью невсиса.
— Дан угол АВС, который следует разделить на три.
— Проводится окружность с центром В любого радиуса, которая пересекает луч В А в точке Р, а луч ВС в точке Q, луч ВС продолжается до прямой, пересекающей окружность в точке R.
— Затем от точки Р проводится прямая STP таким образом, чтобы точка S лежала на прямой CQBR, а Т — на окружности, и при этом выполнялось условие ST = BQ = ВР = ВТ. (Эта операция как раз требует применения невсиса и линейки с разметкой.)
— Далее легко показать: так как треугольники STB и ТВР равнобедренные, то угол BST составляет треть от угла QBP, который требовалось разделить на три.
«ЗАСТЕНЧИВОЕ» ЧИСЛО πИздревле люди замечали, что все круги, в сущности, представляют собой одну и ту же фигуру, только разных размеров — больше или меньше. Было понятно, что пропорции у них одинаковы, то есть соотношение между длиной окружности и ее диаметром является величиной постоянной. А значит, если разделить длину окружности на ее диаметр, мы всегда получим одно и то же число, определенную постоянную к. Но что это за число? Данный вопрос занимал не только древнегреческих математиков, стоял он и перед мыслителями других культур.
Все окружности имеют одно и то же соотношение (к) длины окружности и диаметра.
Для нахождения этого соотношения потребовались целые столетия и океан чернил. Древние математики пытались обозначить упомянутую пропорцию соотношением целых чисел, так что одно за другим появлялись различные приближения, призванные точнее выразить данную величину. И только в начале XIX века было доказано, что искомое соотношение представляет собой иррациональное число, вот почему все попытки получить его делением натуральных чисел были столь бесплодны. Сейчас это число называется π (греческое «пи»):
длина окружности = π • диаметр
Приближение Архимеда настолько удачно, что оно не только использовалось на протяжении многих столетий, но и сегодня вполне пригодно для решения различных практических задач. Согласно его расчетам, соотношение длины окружности и диаметра выражается формулой L=3,14d.
В поисках числа π
В работе «Об измерении круга» отражены изыскания Архимеда в области соотношения длины окружности (L) и ее диаметра (d). Из утверждения 3 этого трактата следует, что длина окружности в 3,14 раз больше ее диаметра, то есть L = 3,14 d.
Если мы вспомним выражение, знакомое всем со школы (I = π • d), то увидим, что Архимед нашел значение я с точностью до второго знака после запятой, то есть у него π = 3,14. Это приближение использовалось все Средние века, а в некоторых случаях мы работаем с ним и сегодня, хотя и знаем, что на самом деле π — иррациональное число с бесконечным числом знаков после запятой.
Техника, которую применил Архимед для нахождения данного соотношения, была основана на методе исчерпывания, описанном выше. То есть он взял окружность и вписал в нее шестиугольник. Между периметром шестиугольника и окружностью осталось пространство, не покрытое шестиугольником. Затем он описал еще один шестиугольник вокруг окружности. Между периметром данного шестиугольника и окружностью осталось пространство, не покрытое окружностью. Естественно, из этого следует, что длина окружности больше периметра вписанного в нее шестиугольника и меньше периметра шестиугольника, описанного вокруг нее.
Можно провести аналогичное умозрительное построение, если использовать понятие площади, причем так будет даже нагляднее. Целью в таком случае будет вычислить площадь круга, ограниченного данной окружностью. Мы знаем, что эта площадь высчитывается по уравнению S = πr². Заметим, что если принять радиус за единицу (r = 1), то площадь будет равна π. Иначе говоря, если мы вычислим площадь окружности с радиусом 1, то получим число π. Архимед предполагал построить круг и как вписывать в него, так и описывать вокруг него правильные многоугольники, начиная с шестиугольника. Площадь круга Sc будет больше площади вписанного шестиугольника SHp и меньше площади описанного SHG (см. серые сегменты на рисунке 1). Этим методом невозможно точно определить площадь, но можно установить ее пределы: 2,5981 < S < 3,4641, то есть она больше площади маленького шестиугольника (2,5981) и меньше площади большого (3,4641). Гениальная находка Архимеда состояла в том, чтобы удвоить число углов многоугольника, доведя его до 12-угольника (рисунок 2). В данном случае значение площади круга лежит между двумя более близкими величинами, так что расчет становится более точным, поскольку площади обоих многоугольников приближаются друг к другу.
РИС. 1
РИС. 2
Архимед продолжил удваивать число углов дальше и в конце концов дошел до многоугольника с 96 сторонами! Это позволило ему доказать, что значение площади круга лежит между 3+10/71 и 3+1/7:
«Окружность любого круга составляет три его диаметра и еще менее 1/7 и более 10/71 его части» («Об измерении круга», утверждение 3):
3 + 10/71 < Sc <3 + 1/7, то есть, 3,1408 < Sc < 3,14029.
Таким образом, площадь круга с радиусом 1 составит 3,14, с точностью до двух знаков после запятой. Тут важно отметить: Архимед знал, что он вывел неточное значение. Ведь помещая площадь между двумя разными значениями, ученый прекрасно понимал, что выполняет только приближение.
Окружность в квадратеСогласно еще одному интересному рассуждению, которое можно найти в трактате «Об измерении круга», площадь вписанного в квадрат круга относится к площади этого квадрата как 11/14. И в данном контексте мы тоже приходим к тому же значению π — приблизительно 3,14. Рассмотрим следствие из этого положения. Во- первых, давайте внимательнее посмотрим на чертеж справа.
Площадь круга: Sкруга = πr².
Площадь квадрата: Sквадрата = (2r)²=4r².
Соотношения, которые их связывают:
площадь круга/площадь квадрата = πr²/4r² = π/4
То, что выяснил Архимед:
площадь круга/площадь квадрата = 11/14
Очевидно, что это одна и та же величина, и мы помним, что все выкладки Архимеда приблизительны:
π/4 ~ 11/14 ~ 3.14
Доказательство от противногоВ трактате «Об измерении круга» утверждается:
Каждый круг равен прямоугольному треугольнику, один из катетов которого равен радиусу круга, а другой — длине окружности.
Имеется в виду равенство их площадей. Для доказательства (см. рисунок) ученый приводит следующие соображения.
— «Предположим, что площадь круга больше площади треугольника: Sкруга > Sтреугольника». Архимед показывает, что такое неравенство невозможно.
— «Предположим, что площадь круга меньше площади треугольника: Sкруга < Sтреугольника». Архимед доказывает, что невозможно и это.
— Учитывая, что площадь круга не может быть ни меньше, ни больше площади треугольника, они должны быть равны: Sкруга = Sтреугольника.
Пользуясь нынешним алгебраическим языком, вышесказанное можно доказать гораздо легче:
— Sкруга = πr².
— Sтреугольника = (основание • высота)/2 = 2πr*r/2 = πr²
— Что означает: Sкруга = Sтреугольника.
Пусть это изобразят на моем надгробии!
В утверждении 34 трактата «О шаре и цилиндре» содержится результат, которым, как нам точно известно, более всего гордился Архимед:
Соотношение объемов цилиндра и вписанного в него шара равно 3/2. Соотношение площадей поверхности цилиндра и вписанного в него шара также равно 3/2 (см. рисунок):
Vцилиндра 3/2 Vшара
Sцилиндра = 3/2 Sшара
Он смог найти абсолютно точное отношение между объемами шара и цилиндра, в который тот вписан. Речь идет о случае, когда диаметр шара равен как диаметру основания цилиндра, так и его высоте. Объем цилиндра получается в полтора раза (3/2) больше объема шара. Такое же соотношение и у площадей их поверхностей. Как мы уже говорили, Архимед даже завещал выбить изображение шара, вписанного в цилиндр, на своем надгробном памятнике вместо эпитафии. В I веке до н. э. Цицерону, по его словам, удалось увидеть это надгробие. До нашего времени оно, к сожалению, не дошло.
РИС.З
РИС. 4
Чтобы получить нужный результат, Архимед использовал различные определения, постулаты и утверждения, попутно найдя важные соотношения площадей других фигур. «О шаре и цилиндре» — это трактат, состоящий из двух книг, написанных в разные годы его жизни. Первая книга служит теоретической основой для второй, представляющей собой ответы на вопросы Досифея, которому она и посвящена. Первая книга заключает в себе 44 утверждения, шесть определений и пять постулатов. Кроме того, некоторые утверждения содержат важные следствия: например, рассматриваемое соотношение между шаром и цилиндром представлено в форме следствия из двух утверждений. Речь идет об утверждениях 33 и 34.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.