Лилия Алексеева - Небесные сполохи и земные заботы Страница 16
- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Лилия Алексеева
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 38
- Добавлено: 2019-02-04 16:12:15
Лилия Алексеева - Небесные сполохи и земные заботы краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Лилия Алексеева - Небесные сполохи и земные заботы» бесплатно полную версию:В книге рассказывается о физических процессах, происходящих в ближнем космосе, о современных теориях, объясняющих эти процессы, включая полярные сияния, или, как они зовутся в просторечии, сполохи. Разгадать природу сполохов пытались давно. Так, одним из первых к правильному их пониманию подошел М. В. Ломоносов. Но только сейчас физики, имеющие в своем распоряжении самые современные средства изучения космического пространства, получили непосредственный доступ к объекту исследования, оказывающего, как выяснилось, влияние на многие стороны земной жизни. Для широкого круга читателей.
Лилия Алексеева - Небесные сполохи и земные заботы читать онлайн бесплатно
В лабораторных плазменных установках в тех областях, где по плазме течет достаточно сильный ток вдоль силовых линий магнитного поля (продольный ток), появляются частицы, намного более энергичные, чем частицы окружающей плазмы. И летят они также вдоль силовых линий магнитного поля.
Подножия магнитных силовых линий, проходящих по магнитосфере, находятся в ионосфере. Легко представить себе, что будет, если в магнитосферной плазме появится такой достаточно сильный продольный ток: в ионосферу посыпятся энергичные частицы. Разрушая нейтральные частицы ионосферы, они создадут в ней добавочные свободные заряды, и сопротивление ионосферному поперечному току упадет. Ситуация становится похожей на короткое замыкание. Из житейского опыта хорошо известно, что при этом происходит: резко увеличивается ток в подводящих проводах. В данном случае это продольные токи из ионосферы в магнитосферу и наоборот. Но с увеличением продольных токов создаются условия для усиленного высыпания в ионосферу энергичных частиц. Процесс таким образом развивается, и режим все больше напоминает короткое замыкание.
По–видимому, такой механизм участвует в создании спокойных дуг полярных сияний: и тех, что тянутся на тысячи километров, и тех, что покороче. Дело здесь не в их длине, а в том, что поперек дуги физические величины распределены знакомым нам образом: пара продольных токов, один течет из магнитосферы в ионосферу, другой — в обратном направлении (рис. 7); над дугой со спутников наблюдаются энергичные частицы — те, что вызывают свечение; в ионосфере увеличено количество свободных заряженных частиц в области свечения, то есть там, где энергичные частицы разбивают нейтральные. Вся эта система очень узкая и правильная, как сама дуга.
Рис. 7. Дуга полярного сияния в поперечном сечении (внизу) и токи над ней
Но ясно, что такой процесс должен идти не только в области спокойных дуг полярных сияний. Мы говорим о дугах просто потому, что они лучше изучены: спокойные легче наблюдать и осмысливать. Для описанного здесь процесса важен дополнительный обстрел ионосферы энергичными частицами. Такие частицы появляются в магнитосфере во время возмущенных состояний космоса, о которых пойдет речь в следующей главе. Заметим еще, что есть идея вызвать подобный процесс путем искусственного (с помощью ракет) введения заряженных частиц в ионосферу — другими словами, уменьшая ее сопротивление поперечному току.
7. Говорит и показывает космос
Что зыблет ясный ночью луч?
Ломоносов М. В.Космос говорит о себе изменениями магнитного поля на поверхности Земли. За ними нетрудно следить, они легко измеряются, и наблюдения можно вести в автоматическом режиме.
При прочих равных условиях на магнитограф, конечно, сильнее всего действует ток, текущий на близком расстоянии. Самая близкая область космоса — ионосфера над нами. Однако ток над местом наблюдений — это только часть всей токовой цепи. Ток этот может замыкаться где угодно в заполненном плазмой космосе. Поэтому без специального исследования нельзя сказать, о каком именно космическом процессе информирует нас магнитометр.
К тому же его показания многое отражают. Например, ветры на ионосферных высотах: при смещениях проводника — ионосферной плазмы — поперек магнитного поля в проводнике возникает электродвижущая сила, а значит, появляются ионосферные и магнитосферные токи, магнитные поля которых воспринимаются земными приборами–магнитографами. По ассоциации с обычной динамо–машиной говорят, что такие магнитные возмущения вызваны действием «ионосферного динамо». Еще замечено, что включение крупных промышленных электрических сетей приводит к появлению ионосферных токов, которые отмечаются магнитометрами на Земле.
И все–таки по показаниям даже одного магнитометра можно сразу сказать, спокойно в космосе или нет. Если тихо, самописец вычерчивает плавную кривую, случилось одиночное возмущение — на кривой появляется либо отдельный выступ, либо характерные колебания, а если наступил период сплошных возмущений, самописец чертит зигзаг за зигзагом (см. рис. 8). Пока мы умеем распознавать в этих записях лишь самые «броские» события.
Рис. 8. Наступление магнитной бури, как оно выглядит на магнитограмме. По горизонтальной оси отложено время, по вертикальной — величины трех составляющих вектора магнитного поля
В своей чудесной сказке «Цветик–семицветик» В. Катаев написал о девочке, по волшебству и своему капризу попавшей на Северный полюс. Стоит она на льдине, а из воды лезут белые медведи. Семь штук, и все разные. Первый — нервный, второй — злой, третий — в берете, четвертый — потертый, пятый — помятый, шестой — рябой, седьмой — самый большой. Примерно так, не по единой системе, а просто по отдельным характерным признакам различают космофизики магнитные возмущения.
Представим себе, что в космосе совсем тихо. Точка, где находится магнитограф, вращаясь вместе с Землей, «выезжает» на ее освещенную сторону, над магнитной станцией, как говорят космофизики, начинается «местный день». Сильный солнечный свет падает теперь на ионосферу, в ней увеличивается число свободных заряженных частиц, сопротивление ее падает, и токи в ней усиливаются. Типичные ветры в ионосфере, создающие благодаря механизму ионосферного динамо «свои» токи в космосе, в дневное время не такие, как в ночное. Чувствует магнитограф и далекие магнитосферные токи, которые неодинаковы с дневной и с ночной стороны магнитосферы: вспомним, как несимметрично искажают они магнитное поле нашей планеты. Так что наш магнитограф конечно же должен отмечать своими показаниями наступление светлого времени суток. Земля вращается, как известно, весьма равномерно, поэтому изменения магнитного поля, связанные с ее вращением, изображаются плавной кривой. Такие спокойные изменения магнитного поля, более или менее одинаковые ото дня ко дню, называются вариациями*, в отличие от возмущений быстрых, иногда рваных зигзагов кривой магнитографа. Данные сети станций обобщают эти наблюдения: вариации магнитного поля сильнее там, где больше освещенность верхней атмосферы Солнцем — в летнем полушарии сильнее, чем в зимнем, в низких широтах — сильнее, чем в высоких.
*(Заметим для читателей, которым это, возможно, понадобится, что здесь речь идет об Sq–вариациях, их величина на экваторе Достигает 100–200 нТ, а в средних широтах только 20 нТ. Т (тесла) — это единица магнитной индукции, н (нано) — это одна миллиардная Доля исходной единицы, в данном случае тесла.)
В высоких широтах такие вариации практически неразличимы на фоне того, что обычно наблюдается под авроральным овалом. Здесь изменения магнитного поля имеют характер возмущений: «на позорях матка дурит», как мы помним, говорили в старину поморы, а законное место «пазорей» — авроральный овал. Простым глазом мы можем наблюдать здесь обычный круговорот космического вещества — магнитосферную конвекцию, когда разные светящиеся неоднородности движутся вечером примерно в западном направлении вдоль аврорального овала, а утром — в восточном. Мы знаем уже, что это часть общей картины движения авроральных форм по овалу с его ночной стороны на дневную и дальше через полярную шапку опять на ночную. Всему этому отвечает определенная система магнитных возмущений*, которая затрагивает и более низкие широты. Это неудивительно, когда на экране — полярном небе — нам «показывают полярные сияния», работают все «блоки» космического телевизора.
*(Это система DP2)
Но вот все светящееся содержимое аврорального овала двинулось в сторону экватора (для нас, жителей Северного полушария, к югу). В особенности это хорошо видно по четким длинным дугам, они все как целое плывут на юг. Это значит, налетающий на магнитосферу поток солнечного ветра принес с собой магнитное поле с южной компонентой. И авроральный овал начал расширяться. Потом все может двинуться назад и вернуться на место или уйти к полюсу. Но если этого не произойдет, межпланетное магнитное поле останется таким же или его южная составляющая усилится, надо ждать красивейшего явления — тех самых цветных переливающихся сияний, которые в общем–то и запоминались путешественникам. Начнется «бесконечная фантасмагория искрящихся красок, превосходящая всякое воображение» (Нансен). Такие сияния случаются наиболее часто и бывают самыми сильными именно при расширенном овале.
Специалисты называют такую передачу из космоса суббурей. По словам известного советского космофизика Ю. И. Гальперина, вспышки сияний при суббуре «очень индивидуальны и больше напоминают поведение капризного живого существа, чем четкий и воспроизводимый физический процесс». Имея дело с капризным человеком, бывает полезно отвлечься от зигзагов его настроения и обращать внимание лишь на их размах или вообще стараться быть от него на расстоянии. Специалисты по суббурям пользуются похожими приемами.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.