Eugenio Aguilar - Наука. Величайшие теории: выпуск 7: Эврика! Радость открытия. Архимед Страница 18
- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Eugenio Aguilar
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 24
- Добавлено: 2019-02-04 16:01:33
Eugenio Aguilar - Наука. Величайшие теории: выпуск 7: Эврика! Радость открытия. Архимед краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Eugenio Aguilar - Наука. Величайшие теории: выпуск 7: Эврика! Радость открытия. Архимед» бесплатно полную версию:Архимед из Сиракуз жил в эпоху войн, поэтому не удивительно, что часть своего дарования он направил на создание машин, призванных защитить его родной город. Ученый внес серьезный вклад в эту сферу деятельности, впрочем, как и во все другие, входящие в круг его интересов: математику, физику, инженерное дело, астрономию... Он вычислил площадь сегмента параболы с помощью метода, который можно считать предвестником интегрального исчисления. Он открыл физические законы работы рычага и даже осмелился сосчитать количество песчинок, которыми можно заполнить Вселенную, — такое огромное число, что Архимеду пришлось изобретать собственный способ его записи! Но более всего древнегреческого ученого прославило открытие закона гидростатики, носящего теперь его имя. Данный закон, без сомнения, является одним из самых важных в истории, и он по праву удостоился того радостного возгласа, который с тех пор стал символом научного открытия: «Эврика!»Прим. OCR: Врезки текста выделены жирным шрифтом. Символ "корень квадратный" заменен в тексте SQRT().
Eugenio Aguilar - Наука. Величайшие теории: выпуск 7: Эврика! Радость открытия. Архимед читать онлайн бесплатно
В утверждении 5 говорится, что площади этих кругов будут равны (SС1=SС2), независимо от местоположения точки С, отчего они и называются кругами-близнецами Архимеда. Существуют и другие круги, связанные с арбелосом, они тоже носят личные имена — круг Аполлония, круг Паппа и круг Банкофа.
Еще одна фигура, представленная в «Книге лемм», называется салинон, что согласно интерпретации историка математики Томаса Хита означает «солонка». В утверждении 14 даются указания, как построить эту фигуру, и вновь встречается имя Архимеда. То, что он неоднократно упоминается в данном трактате, говорит об учебном характере книги. Инструкции же, которые даются в ней для постройки салинона (рисунок 17 на стр. 116), таковы.
— Проводится отрезок прямой АВ, и в его середине отмечается точка О.
— Строится полуокружность, диаметр которой равен отрезку АВ.
— На отрезке АВ строятся еще две полуокружности равного диаметра (меньшего, чем половина отрезка) так, чтобы они касались первой полуокружности в точках А и В.
— Получаются полуокружности с диаметрами AD и ЕВ и центрами соответственно в точках G и H.
— Строится полуокружность с диаметром DE в сторону, противоположную двум предыдущим, замыкая таким образом фигуру.
— Фигура, замкнутая построенной линией из четырех полуокружностей, и есть салинон.
Место предполагаемой могилы Архимеда в Сиракузах на Сицилии.
В 1965 году вычисление наименьшего из возможных решений задачи о быках заняло у компьютера IBM 7040 7 часов 49 минут (фото: Columbiana photo archive).
В «Книге лемм» Архимед представляет геометрическую фигуру «арбелос» (сапожный нож), названную так из-за сходства с соответствующим инструментом (фото: Thomas Schoch).
РИС. 17
РИС. 18
Интересно отметить, что при представлении салинона Архимед в том же утверждении описывает следующее его свойство.
— Проводится прямая, перпендикулярная АВ и проходящая через точку О.
— Эта прямая пересекает границы салинона в точках С и F.
— Берется точка Р, представляющая собой середину отрезка CF, и строится окружность с центром Р и диаметром CF.
— Можно доказать, что площадь салинона равна площади круга с диаметром CF и центром Р (рисунок 18).
Трехмерные архимедовы фигуры
К сожалению, до нас не дошел трактат «О правильных многогранниках», в котором, по- видимому, Архимед подробно описывал трехмерные тела, носящие в наше время его имя. Однако мы знаем о них благодаря александрийскому математику Паппу. В книге V своего «Математического собрания» он пишет:
«Хотя можно придумать множество многогранников самых разных видов, более всего заслужили внимание многогранники, которые имеют правильную форму. Таковы не только фигуры, найденные великим Платоном, то есть тетраэдр, куб, октаэдр, додекаэдр и пятый — икосаэдр, но и 13 многогранников, открытых Архимедом, сложенные из правильных, но не одинаковых многоугольников с равными сторонами и равными углами».
РИС. 19
Архимедовы тела, примеры которых приводятся на рисунке 19, — это 13 выпуклых многогранников, которые по большей части получаются из Платоновых тел «срезанием углов»: усеченный куб, усеченный тетраэдр, малый ромбокубооктаэдр, большой ромбокубооктаэдр, усеченный октаэдр, усеченный додекаэдр, усеченный икосаэдр, плосконосый куб, кубооктаэдр, малый ромбоикосододекаэдр, большой ромбоикосододекаэдр, икосододэкаэдр и плосконосый додекаэдр.
ГЛАВА 4
Военный инженер
Греческий мир в эпоху Архимеда был охвачен желанием понять и покорить окружающую природу. Для этой цели требовалось создавать разнообразные машины, все более и более сложные, будь то устройства открытия ворот, или подъемные механизмы для больших грузов, или более совершенные корабли. Именно в таких обстоятельствах математика, находившаяся на тот момент в расцвете, открыла дорогу инженерному искусству.
Архимед известен скорее в связи со своими машинами и техническими новшествами, чем с тем вкладом, который он внес в математику. Любопытно, что как раз о машинах, изобретение которых ему приписывается, он не написал ни строчки, по крайней мере мы об этом ничего не знаем. И тем не менее существует множество упоминаний о них в различных источниках, поэтому можно считать более-менее установленным фактом, что именно Архимед был их автором. Как уже говорилось, возможно, именно математики той эпохи уделяли наименьшее внимание технике, хотя ее развитие в античности шло довольно интенсивно.
Из рассказа об осаде Сиракуз становится ясно, что Архимед был очень талантливым механиком и инженером. Например, свои разработки в области рычага он использовал при конструировании и модернизации катапульты, а также в сложных системах блоков.
Сведения об изобретениях сиракузского мудреца не лишены мифологических и легендарных элементов: некоторые авторы даже рассказывают о применении им так называемых зажигательных зеркал, лучи которых смогли поджечь римский флот. Здесь мы еще раз обратимся к некоторым источникам, упомянутым в первой главе, чтобы привести библиографические ссылки на обсуждаемые механизмы.
АЛЕКСАНДРИЙСКИЕ МАШИНЫИстория инженерной мысли восходит к самим истокам возникновения человечества, если под инженерией понимать использование инструментов для улучшения человеческой жизни.
И все же именно ко времени Архимеда нам следует отнести начало научной инженерной деятельности, которая заключается в применении геометрических знаний к явлениям физического мира и в постройке различных механизмов. Филон Византийский (280-220 до н. э.) писал свои трактаты на койне, общегреческом диалекте того времени, чтобы его могли понять все интересующиеся специалисты. В своем труде «О метательных машинах» он анализирует устройство катапульты, исходя из веса метаемого снаряда и запасенной упругим элементом энергии. Герои Александрийский заимствовал некоторые идеи Архимеда, уточнив, к примеру, законы рычага и практически предвосхитив третий закон Ньютона — закон о действии и противодействии. Это привело к созданию им первой паровой турбины, известной как «эолипил» и состоявшей из закрытого шарообразного сосуда с двумя изогнутыми трубками: вырываясь из них, пар заставлял машину быстро вращаться. С практической точки зрения паровая машина Герона была всего лишь одним из модных автоматов той эпохи. Архимед же направил свои силы на математическое обоснование, необходимое для конструирования и постройки некоторых из подобных машин.
Видимо, Архимед использовал свой талант не только в военной области, но и в других сферах жизни: например, он сконструировал систему для подъема воды, известную теперь как архимедов винт, о которой мы еще поговорим.
АРХИМЕД В ФИЛАТЕЛИИВеликих исторических деятелей часто увековечивают на изображениях почтовых марок, и Архимед — не исключение. Приведем несколько примеров таких марок.
А: Италия. Дата выпуска: май 1983 года. Хотя изображение на марке заявлено как бюст Архимеда из неаполитанского Национального музея, на самом деле это бюст Архидама III. Здесь же изображен архимедов винт. В: Греция. Дата выпуска: апрель 1983 года. Эта картинка — перерисовка ренессансной мозаики, посвященной смерти Архимеда. Однако лицо у известного ученого такое же, как и на итальянской марке. Обратите внимание на равноплечные весы, символизирующие закон Архимеда.
С: Сан-Марино. Дата выпуска: апрель 1982 года. Забавно, что и здесь мы видим все то же изображение царя Архидама III. В правом верхнем углу находятся геометрические фигуры, которые древнегреческий ученый велел выбить на своем надгробии.
D: Гвинея-Биссау. Дата выпуска: 2008 год. Лицо снова чужое, то же самое, что и на предыдущих марках. В глубине — астероид, названный именем Архимеда.
Е: Никарагуа. Дата выпуска: 1971 год. Марка посвящена закону рычага. F: Испания. Дата выпуска: 1963 год. Репродукция картины испанского художника Хосе де Риберы (1591-1652), хранящейся в музее Прадо в Мадриде.
Гигантская «сиракузия» и архимедов винт
Греческий писатель Афиней Навкратийский (ок. 200) рассказывает в своей книге «Пир мудрецов», что тиран Гиерон II поручил Архимеду спроектировать огромный корабль, около 55 м длиной, принимающий на борт до 600 человек. Судно получило имя «Сиракузия» в честь одноименного города, а его постройку и отделку приписывают Архию Коринфскому.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.