Николай Тарасенко - Что вы знаете о своей наследственности? Страница 4

Тут можно читать бесплатно Николай Тарасенко - Что вы знаете о своей наследственности?. Жанр: Научные и научно-популярные книги / Научпоп, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Николай Тарасенко - Что вы знаете о своей наследственности?

Николай Тарасенко - Что вы знаете о своей наследственности? краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Николай Тарасенко - Что вы знаете о своей наследственности?» бесплатно полную версию:
В книге отражены современные представления об основах генетики человека. Читатель узнает, как наследуется пол организма, познакомится с некоторыми наследственными изменениями в генотипе, их причинами и последствиями. В доступной форме рассматриваются генетическая природа таких наследственных заболеваний, как сахарный диабет, сердечно-сосудистые заболевания, а также возможности их диагностики и профилактики. Отдельные разделы посвящены аллергическим отклонениям (пищевая и лекарственная аллергия), питанию, среде обитания человека, вопросам национальности, языка, культуры. Описаны некоторые социальные аспекты современного человека: «эффект одиночки», «старая первородка», «40 % интеллекта — до трех лет» и др.Первое издание книги, вышедшее в 1980 г., отмечено премией Всесоюзного общества генетиков и селекционеров им. Н. И. Вавилова.Адресуется широкому кругу читателей, интересующихся проблемами биологии и генетики человека.

Николай Тарасенко - Что вы знаете о своей наследственности? читать онлайн бесплатно

Николай Тарасенко - Что вы знаете о своей наследственности? - читать книгу онлайн бесплатно, автор Николай Тарасенко

Теперь, когда мы заглянули во внутрь клетки, интересно проследить за изменениями в генетической программе, в очередности триплетов в ДНК под действием химических и физических факторов (разные виды ионизирующей радиации). Подсчитано, что для разрыва хромосомы толщиной 0,2 мк необходимо, чтобы на пути пробега через нее альфа-частицы образовалось около 15—20 пар ионов. Следует отметить, что степень изменения хромосомы зависит от места, через которое проходит ионизирующая частица, то есть от того, какой ген претерпевает изменение.

Возникает вопрос: будет ли изменение в ДНК конкретного гена гарантией мутации. Оказывается, что нет. Исследования показали, что на пути репликации имеется целый ряд барьеров, только с преодолением которых мутация от первичного изменения в ДНК может выйти на фенотип.

В последние годы учеными обнаружен сложный барьер в виде системы восстановления, стоящий на пути возможного нарушения очередности оснований в генах. Установлено, что если облучить бактериальные клетки (например, кишечную палочку) или обработать их специальными химическими веществами, вызывающими изменение очередности оснований в молекулах ДНК, то через некоторое время примерно 40—60 % участков ДНК, несущих повреждения, может бить «вырезано» специальными ферментами и заново «застроено» (как бы отремонтировано) комплементарными основаниями. Это происходит потому, что по неизмененной цепочке ДНК клетка способна полностью восстанавливать исходную двойную структуру своего генного материала.

В результате сложных процессов, происходящих в клетке после облучения ионизирующей радиацией или воздействия химическими веществами, возникает новая последовательность расположения пар оснований. Однако эта мутация пока не связана с генетическими последствиями. Клетке необходимо преодолеть еще ряд преград, чтобы изменение на молекулярном уровне могло бы реализоваться на уровне организма.

Предположим, что один барьер преодолен, и поврежденные участки восстановлены лишь частично. В результате появился новый порядок (очередность) оснований в ДНК. Приведет ли это к изменению признаков организма? Нет, не приведет. Следующей преградой является вырожденность генетического кода, или, как ее еще называют, повторяемость, которая также значительно снижает частоту вызванных мутаций.

Далее. Известно, что из четырех оснований при составлении всех возможных триплетов получается 64 комбинации, а наиболее часто встречающихся аминокислот — только 20. Ученые воссоздали все 64 типа триплетов экспериментально, а генетический код при этом оказался триплетным. Последнее означает, что три нуклеотида кодируют (устанавливают) конкретную аминокислоту в определенное место в полипептидной цепи при создании молекулы белка на специальной матрице — информационной РНК.

Возникает вопрос. Почему в процессе эволюции природа так жестко унифицировала генетический код, а не сохранила для каждой аминокислоты свой уникальный, единственный, триплет (см. рис. 4)? Оказывается, эволюция произвела такую унификацию для сохранения стабильности в работе генетического материала и устранения возникающих помех (ошибок), как бы своего рода шумов. Природа поставила препятствия на пути изменения очередности оснований в ДНК, иными словами, создала запас прочности работы молекулярных основ жизни.

Представим себе такую ситуацию. При облучении клеток или обработке их химическими мутагенами удалось изменить очередность нуклеотидов в гене таким образом, что вместо триплета, например,

АГУ образовался один из триплетов УЦЦ, УЦА, УЦГ, УЦУ или АГЦ. В этом случае при сборке (синтезе) белка в нить информационной РНК встраивается та же аминокислота, какова была и у неизмененного, исходного, триплета — а именно, серия. Возникшая новая очередность нуклеотидов в гене не сможет реализоваться, то есть дойти до генетических последствий, из-за вырожденности генетического кода. Следовательно, не каждое изменение в очередности оснований в гене приводит к мутации.

Таким образом, вырожденность генетического кода оказалась одной из гарантий стабильности работы генетического материала.

Предположим теперь, что вызванное изменение в очередности оснований ДНК не было нейтрализовано вырожденностью генетического кода. Необходимо далее, чтобы это изменение не было задержано, снято соматическим (клеточным) отбором. Иными словами, необходимо, чтобы приобретенное клеткой изменение не сказалось на темпе деления, в противном случае такая клетка не сможет конкурировать с нормальными, неизмененными, клетками.

Только в том случае, если клетка, в которой произошли изменения, будет нормально функционировать и размножаться, эти изменения будут переданы дочерним клеткам и смогут дойти до морфологического или физиобиохимического проявления. Однако часто такая клетка размножается слабее нормальной и не может успешно конкурировать с последней. В силу этого происходит клеточный (соматический) отбор, что приводит к снижению частоты наследственных изменений — клетка с изменениями будет просто вытеснена нормальными клетками. Однако допустим, что и этот барьер преодолен. Дойдет ли теперь полученное изменение до фенотипа? Чтобы это произошло, необходимо еще одно условие. Еще один своего рода барьер существует на уровне протекания мейоза в половых клетках, когда многие изменения, прошедшие первые три преграды, могут быть задержаны, как бы нейтрализованы.

Итак, барьеры для мутации природа создала, однако наследственные болезни существуют и передаются из поколения в поколение. В чем же причина?

В 1908 году математик из Англии Харди и врач из Германии Вайнберг независимо друг от друга, проведя математический анализ распределения генов в популяции, обнаружили закономерность, хорошо описывающуюся формулой, отражающей количественную сторону генотипов и фенотипов в популяции. По закону Харди — Вайнберга, свободно существующие популяции при любом соотношении аллелей из поколения в поколение сохраняют их концентрации постоянными. Но это справедливо для идеальных условий, а в реальной жизни количество аллелей постоянно изменяется. Последнее происходит при родственных браках, мутировании генов, отборе, а также при таких социальных явлениях, как изоляция, миграция и др. Более подробно изменение частоты генов в популяциях описано Н. П. Дубининым (1966, 1970, 1986 гг.) и В. П. Эфроимсоном (1968 г.).

Процесс отбора по устранению нежелательных генов из популяции наиболее эффективен в том случае, когда он направлен против доминантных мутаций при условии их полного выражения и проявления (экспрессивность и пенетрантность). В качестве примера можно привести болезнь ахондроплазию (доминантная карликовость). Когда эта болезнь проявляется в более позднем возрасте и носитель летального гена уже имеет потомство, то, естественно, такой доминантный ген уже передан потомкам (например, хорея Гантингтона). Бороться с переходом этой и аналогичных болезней от данного поколения к следующим можно лишь избегая деторождении в этих семьях.

Глава 2. Хромосомные аномалии

Хромосомные аномалии представляют собой изменение наследственного материала, включающего сотни генов, и связаны с изменением числа или строения хромосом. Наличие лишней хромосомы (трисомия) или отсутствие одной из них (моносомия) ведет к избытку или недостатку многих генов, что связано с изменением многих фенотипических признаков организма. Такие хромосомные аномалии (синдромы), как правило, называются по имени ученых, которые их открыли и описали.

В 1960 году английский ученый Ноуэл создал новый метод получения препаратов хромосом из периферической крови. До этого времени все работы по изучению хромосом человека проводились на материале, получаемом в результате операций. В современных экспериментах для кариологических исследований используются кровь, костный мозг, кожа и другие ткани, полученные разными методами. При этом кровь чаще всего берется из вены, пальца, пуповины (при ее обрезе у только что родившихся), а у детей до одного года — в основном из пятки.

Мужские и женские хромосомы

Как уже упоминалось, в клетках человека содержится 46 хромосом, собранных в 23 пары (в каждой паре по одной хромосоме от каждого родителя), которые, в свою очередь, условно делятся на блоки А — G. Двадцать две пары называются аутосомными. Они одинаковы по размеру и обязательно присутствуют во всех клетках как мужчины, так и женщины. В двадцать третьей паре хромосомы не одинаковы по размеру. Эти хромосомы определяют пол в поэтому называются половыми. Генотип женщины содержит две хромосомы XX, а мужчины — XY (рис. 8). Одну из них, крупную, называют Х-, а другую, меньшую,— Y-хромосомой.

Формы и размеры хромосом человека различны. Каждая из них имеет перетяжку (центромеру), которая делит хромосому на две части (плеча). В зависимости от расположения центромеры различают три типа хромосом: метацентрические (центромера расположена в центре хромосомы и оба плеча хромосомы одинаковы по длине); субметацентрические (центромера расположена не в центре хромосомы, одно плечо несколько больше другого); акроцентрические (центромера расположена на конце хромосомы, одно плечо длинное, а другое очень короткое).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.