Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление Страница 7
- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Rafael Lahoz-Beltra
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 25
- Добавлено: 2019-02-04 16:11:35
Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление» бесплатно полную версию:Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.
Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление читать онлайн бесплатно
Программа остановка (кандидат, вход)
if input = вход и кандидат → остановится
then остановка (кандидат, вход) = истина
if input = вxoд и кандидат → не остановится
then остановка (кандидат, вход) = ложь;
Представим, что, используя программу остановка (кандидат, вход), мы пишем другую программу, которая называется парадокс (вход):
программа парадокс (вход)
if остановка (кандидат, вход) = ложь
then return истина
else return ложь
Сделаем в наших рассуждениях еще один шаг и вслед за Тьюрингом обозначим через Р программу парадокс. Далее выполним программу остановка (Р, Р). Если программа, вложенная в главную, вернет ответ «Ложь», значит, программа Р не останавливается, получив в качестве входных данных программу, идентичную себе самой, тогда основная программа парадокс (Р), вернув значение « Истина», должна остановиться, но это невозможно и, значит, ложно.
Напротив, если программа остановка (Р, Р) вернет ответ «Истина», так как программа Р остановит свое выполнение, получив в качестве входных данных величину Р, тогда программа парадокс Р не остановится, возвращая значение «Ложь». Принимая во внимание все противоречия, Тьюринг сделал вывод, что программа остановка (или halt) не позволяет оценить Р. Другими словами, проблема остановки неразрешима.
Хотя и не существует программы, которая служила бы универсальным инструментом для удовлетворительного решения проблемы остановки, ученые решили, что можно написать программу, дающую ответы на отдельные случаи, то есть, говоря современным языком, частные программы. Этот класс программ был назван программами PHS (partial halting solver), или программами, частично решающими проблему остановки. Однако со временем ситуация была сочтена такой же неразрешимой, как и с проблемой остановки. Вновь используя язык BASIC-256, напишем программу, которая получает на вход программу Р$. Задача состоит в получении на выходе (output) сообщения о том, останавливается ли выполнение программы Р$:
input Р$
if Р$ = "halt" then
print «программа останавливается ДА»
else
print «программа останавливается НЕТ»
endif
end
Мы приходим к поистине разочаровывающему выводу: нет уверенности, что такая простая с виду программа вернет пользователю корректный результат. Удивительно, что еще до появления компьютера и программного обеспечения Тьюринг смог прийти к выводу, что не существует механической процедуры, то есть машины Тьюринга или современной компьютерной программы, которая могла бы определить, остановится ли другая программа (или машина Тьюринга), получив на вход определенные данные. Этот вывод Тьюринг получил с помощью собственного изобретения — машины Тьюринга. Это еще раз доказывает гениальность ученого, который за свою короткую жизнь смог стать величайшим человеком XX века.
БЕСКОНЕЧНОСТЬ МАШИН ТЬЮРИНГАСовременный компьютер можно считать машиной Тьюринга, имеющей внутри себя еще одну такую машину. Для пояснения этой идеи приведем в пример один из первых компьютеров, ENIAC (Electronic Numerical Integrator And Computer). Этот мастодонт начала компьютерной эры может быть представлен как машина Тьюринга с тремя лентами: одна лента — для считывания входных данных, другая — для записи и возвращения результата, а третья выполняла роль памяти.
Современные компьютерыВ современном компьютере машина Тьюринга, имевшаяся в ENIAC, должна быть изменена, принимая во внимание, что входящая лента раздваивается на вспомогательную память (например, жесткий диск, SD- или флеш-карта) и клавиатуру. В такой машине в виде ленты выхода можно представить монитор, лента памяти соответствует RAM (ОЗУ). Если мы будем рассматривать операционную систему (разные версии Windows Microsoft, или Linux/Unix, или Mac OS) как машину Тьюринга, получится, что совокупность программ, позволяющих управлять ресурсами компьютера, — это машина Тьюринга, контролирующая другую такую же машину, которой является сам компьютер. Кроме того, когда программист пишет программу — совокупность инструкций, то есть исходный код, — он, в свою очередь, должен перевести эти инструкции в машинный или двоичный вид с помощью компилятора, который также можно считать машиной Тьюринга. После преобразования программа может быть выполнена микропроцессором — важнейшим устройством в компьютере. Лежащая в основе всего модель представляет и компьютер, и программу, с помощью которой мы переводим программы на язык, делающий возможным их выполнение, и операционную систему как машины Тьюринга. Другими словами, «все это программы, все это software», к которым нужно добавить электронные схемы, hardware, как будто бы речь идет о software, — эта важная идея является следствием разработок Тьюринга.
ПОСТРОИТЬ МАШИНУ ТЬЮРИНГАКак ни парадоксально это звучит, машина Тьюринга никогда не была воплощена в жизнь самим автором, несмотря на его самоотверженные усилия. Это устройство было и осталось теоретическим, но с его помощью стало возможным определить, какие вопросы могут быть решены с помощью компьютера. Однако исследователи и любители компьютеров по всему миру создали машины, в основе которых лежали теоретические разработки Тьюринга.
Одна из первых моделей появилась в 1972 году в Университете Брандейса в Массачусетсе (США). Ее создатель Ира Гилберт преследовал цель обучать студентов основам информатики. Чуть позже появилось несколько версий машины Тьюринга из деталей LEGO. С помощью соединяющихся друг с другом пластиковых кубиков Денис Кузено построил машину Тьюринга, хотя эта модель не была полностью автоматизирована. Для хранения в программируемом микроконтроллере таблицы переходов в ней применялись «умные» кубики LEGO RCX, использующиеся любителями-робототехниками. Еще одна модель машины Тьюринга была построена с помощью LEGO японцем Джо Нагатой. В 2010 году Майк Дейви создал винтажную модель в память о машине, описанной в работе Тьюринга, которая была опубликована в 1936 году. В его устройстве были использованы микроконтроллер Parallax Propeller и SD-карта, на которой хранились данные о состояниях машины.
Все эти примеры показывают, что практическая реализация на уровне hardware машины Тьюринга не так проста. В то же время существует немало примеров моделирования машины Тьюринга с помощью software, в основном потому что такой вариант гораздо доступнее. Среди самых интересных проектов можно назвать «Turing and Post Machines: C++ Simulators» — подборку программ на языке C++ для моделирования машины разных типов (детерминистской, индетерминистской, универсальной, с ошибками, с разными лентами и др.); симулятор Visual Turing, разработанный для операционной системы Windows и позволяющий увидеть в действии разные машины Тьюринга. Еще один пример простой машины Тьюринга на языке Java называется tmsimbgm. Существует оригинальная программа jkturing Джона Кеннеди из Университета Санта-Моники (США), созданная для операционной системы MS-DOS и обновленная для разных версий Windows, хотя этот вариант моделирования несколько более скромный, чем Visual Turing или Jflap. Очень любопытна модель Uber Turing Machine 2011 года, включающая алфавит для написания алгоритмов. Все эти программы вызывают интерес, потому что представляют собой варианты моделирования машины Тьюринга на универсальной машине Тьюринга — компьютере.
Одной из самых интересных задач является возможность создать машину Тьюринга, используя другую машину — игру «Жизнь». Этот автомат был придуман в 1970 году Джоном Хортоном Конвеем (р. 1937), профессором Кембриджского университета, где учился и Тьюринг. Речь идет о модели компьютера, которая была очень популярна среди любителей науки, особенно после того, как ее описал популяризатор математики Мартин Гарднер (1914-2010) в журнале Scientific American. Игра представляет собой клеточный автомат, то есть двумерную решетку, клетки которой заполнены конечными автоматами, также известными как машины конечных состояний. Речь идет об объекте, находящемся в одном из множества состояний, при этом данное множество конечно. Например, светофор может находиться в течение некоторого времени t в состоянии «зеленый», то есть в одном из трех возможных (красный, желтый, зеленый). Другой пример — нейрон, который может находиться в состоянии покоя или возбуждения. В машине Тьюринга, использующей для моделирования клеточный автомат, с течением времени (ί) состояния каждого конечного автомата обновляются. Обновление или расчет, каким будет состояние в следующий отрезок времени (£ + 1), происходит в соответствии с набором правил, известных как правила перехода, меняющие состояние каждого конечного автомата с учетом его актуального состояния и состояний соседних автоматов.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.