Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард Страница 7
![Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард](https://cdn.worldbooks.info/s20/3/3/0/1/4/2/330142.jpg)
- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Сасскинд Леонард
- Страниц: 88
- Добавлено: 2020-09-16 05:38:49
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард» бесплатно полную версию:Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Сасскинд Леонард читать онлайн бесплатно
Схождение в преисподнюю
Низшёл путём лесистым в мрак пучин.
Данте. Божественная комедия[22].Для человека, падающего в чёрную дыру солнечной массы, приливные силы уже не будут столь слабыми. Огромная масса, сжатая в крошечный объём чёрной дыры, делает гравитацию вблизи горизонта не только очень сильной, но ещё и крайне неоднородной. Задолго до подлёта к радиусу Шварцшильда, на расстоянии более 100 000 км от чёрной дыры, приливные силы вызовут сильнейший дискомфорт. Подобно 2000-мильному человеку, вы окажетесь слишком велики для быстро меняющегося гравитационного поля чёрной дыры. К моменту сближения с горизонтом вы деформируетесь — почти как зубная паста, выдавливаемая из тюбика.
Есть два способа справиться с приливными силами на горизонте чёрной дыры: уменьшиться самому или сделать больше чёрную дыру. Бактерия не заметила бы приливных сил на горизонте чёрной дыры солнечной массы, но и вы не почувствовали бы приливных сил на горизонте чёрной дыры в миллион солнечных масс. Это может показаться странным, поскольку воздействие гравитации более массивной чёрной дыры сильнее. Но в этом суждении игнорируется важный факт: горизонт крупной чёрной дыры настолько велик, что будет казаться почти плоским. Вблизи горизонта гравитационное поле будет очень сильным, но практически однородным.
Если вы немного знакомы с ньютоновской теорией гравитации, то сможете рассчитать приливные силы на горизонте тёмной звезды. И тогда окажется, что чем она больше и массивнее, тем меньше приливные силы на горизонте. Поэтому пересечение горизонта очень большой чёрной дыры будет ничем не примечательным событием. Но в итоге от приливных сил не спастись даже в величайшей из чёрных дыр. Её размеры лишь отсрочат неизбежное. В конце концов неминуемое падение к сингулярности будет столь же ужасным, как и любая пытка, придуманная Данте или применённая Торквемадой в процессах испанской инквизиции. (В памяти всплывает дыба.) Даже мельчайшая бактерия будет разорвана на части вдоль вертикальной оси и сплющена по горизонтальной. Небольшие молекулы проживут дольше бактерий, а атомы ещё немного дольше. Но рано или поздно сингулярность одержит верх даже над отдельным протоном. Не знаю, прав ли Данте, утверждая, что ни один грешник не избежит адских мук, но я совершенно уверен: ничто не сможет устоять против чудовищных приливных сил вблизи сингулярности чёрной дыры.
Но, несмотря на всю чуждость и брутальность свойств сингулярности, не в ней заключены глубочайшие загадки чёрной дыры. Мы знаем, что происходит с любым объектом, который угораздило попасть в чёрную дыру, — судьба его незавидна. Однако нравится нам сингулярность или нет, она и близко не подходит по парадоксальности к горизонту. В современной физике практически ничто не вызывало большей путаницы, чем вопрос о том, что происходит с материей, когда она проваливается сквозь горизонт? Любой ваш ответ, вероятно, будет ошибочным.
Митчел и Лаплас жили задолго до рождения Эйнштейна и не могли знать о двух открытиях, совершённых им в 1905 году. Первым из них была специальная теория относительности, в основе которой лежит принцип: ничто — ни свет, ни что-либо другое — никогда не может превысить скорость света. Митчел и Лаплас понимали, что от тёмной звезды не может уйти свет, но они не догадывались о невозможности этого ни для чего другого.
Вторым открытием Эйнштейна, сделанным в 1905 году, было то, что свет действительно состоит из частиц. Вскоре после того, как Митчел и Лаплас выдвинули свои соображения относительно тёмных звёзд, ньютоновская корпускулярная теория света оказалась в опале. Накопились доказательства того, что свет состоит из волн, подобных звуковым или тем, что бегут по поверхности моря. К 1865 году Джеймс Клерк Максвелл показал, что свет состоит из колеблющихся электрического и магнитного полей, которые распространяются сквозь пространство со скоростью света, и корпускулярная теория вовсе перестала подавать признаки жизни. Похоже, никто и не задумывался, что электромагнитные волны тоже могут притягиваться гравитацией, так что тёмные звёзды были забыты.
Забыты, пока в 1917 году астроном Карл Шварцшильд не решил уравнения новой, общей теории относительности Эйнштейна и не переоткрыл тёмные звёзды[23].
Принцип эквивалентности
Как и большинство эйнштейновских работ, общая теория относительности была сложной и изысканной, но она строилась на исключительно простых наблюдениях. Фактически они настолько элементарные, что были доступны каждому, но никто их не сделал.
Это было в стиле Эйнштейна — делать далеко идущие выводы из простейших мысленных экспериментов. (Лично меня этот способ мышления восхищает более всех прочих.) В случае общей теории относительности в мысленном эксперименте участвовал наблюдатель в лифте. Учебники часто модернизируют эксперименты, заменяя лифт ракетой, но в эпоху Эйнштейна лифты были захватывающей новой технологией. Он первым представил себе лифт, свободно плывущий в открытом космосе, вдали от любых тяготеющих объектов. Всякий, кто находится в таком лифте, будет испытывать полную невесомость, а снаряды будут пролетать мимо по идеально прямым траекториям с постоянной скоростью.
![](https://cdn.worldbooks.info/s20/3/3/0/1/4/2/img/i_012.jpg)
С лучами света будет происходить то же самое, но, конечно, на скорости света.
Далее Эйнштейн представил, что случится, если начать ускорять лифт вверх, скажем, с помощью кабеля, прикреплённого к какому-то далёкому якорю, или посредством укреплённых под днищем ракет. Пассажиров начнёт прижимать к полу, а траектории снарядов станут загибаться вниз, образуя параболические орбиты. Всё будет в точности также, как и под воздействием гравитации. Все знают об этом со времён Галилея, но Эйнштейну выпало превратить этот простой факт в новый мощный физический принцип. Принцип эквивалентности гласит, что не существует абсолютно никакой разницы между воздействием гравитации и воздействием ускорения. Никакой эксперимент, проведённый внутри лифта, не позволит отличить, покоится лифт в гравитационном поле или ускоряется в открытом космосе.
Само по себе это не было удивительно, однако имело важнейшие следствия. В то время, когда Эйнштейн сформулировал принцип эквивалентности, было очень мало известно о том, как гравитация влияет на другие явления, такие как течение электричества, поведение магнитов или распространение света Согласно эйнштейновскому подходу, начинать следовало с того, чтобы разобраться, как на все эти явления воздействует ускорение. При этом обычно не появлялось какой-то новой физики. Всё, что делал Эйнштейн, — это представлял себе, как известные явления будут выглядеть в ускоряющемся лифте. А затем принцип эквивалентности подсказывал ему, каково будет влияние гравитации.
В первом примере рассматривалось поведение света в гравитационном поле. Представьте себе световой луч, движущийся горизонтально слева направо поперёк лифта. Если бы лифт свободно двигался вдали от любых тяготеющих масс, свет шёл бы по идеально прямой горизонтальной линии.
![](https://cdn.worldbooks.info/s20/3/3/0/1/4/2/img/i_013.jpg)
Но теперь допустим, что лифт ускоряется вверх. Свет начинает движение с левой стороны лифта в горизонтальном направлении, но из-за того, что лифт ускоряется, ко времени прихода на другую его сторону у света появится составляющая движения, направленная вниз. С одной точки зрения, лифт ускоряется вверх, но, с другой, — его пассажирам кажется, что свет ускоряется вниз.
![](https://cdn.worldbooks.info/s20/3/3/0/1/4/2/img/i_014.jpg)
Фактически световой луч искривляется так же, как и траектория очень быстрой частицы. Этот результат никак не зависит от того, состоит свет из волн или из частиц; это просто эффект направленного вверх ускорения. Но, рассуждал Эйнштейн, если ускорение заставляет изгибаться траекторию светового луча, то же самое должна делать и гравитация. В действительности можно сказать, что гравитация притягивает свет и заставляет его падать. Это полностью совпадает с догадками Митчела и Лапласа.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.