Джон Уоллер - Правда и ложь в истории великих открытий Страница 8
- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Джон Уоллер
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 66
- Добавлено: 2019-02-04 15:57:03
Джон Уоллер - Правда и ложь в истории великих открытий краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Джон Уоллер - Правда и ложь в истории великих открытий» бесплатно полную версию:В истории науки множество мифов. Их герои, великие ученые. — настоящие рыцари чести, бескорыстные, благородные, жертвующие во имя науки всем, что у них есть. Но насколько мифы соответствуют истине? Известный английский историк науки Джон Уоллер (р. 1972 г.) рассказывает, основываясь на исследованиях современных ученых, о том, как на самом деле совершались великие открытия. Перед читателем разворачиваются человеческие драмы, полные борьбы идей, амбиций, честолюбий, и эти драмы не менее увлекательны, чем самые необыкновенные мифы.
Джон Уоллер - Правда и ложь в истории великих открытий читать онлайн бесплатно
Важность, которую Милликен придавал демонстрации того, что электрический эффект можно свести к крохотным заряженным точкам, объяснялась как раз силой противоположной позиции, — позиции сторонников эфира. Милликен должен был понимать, что в случае удачи он станет абсолютным победителем. Если же молекулярные заряды хаотично располагаются в широком континууме, то это будет серьезным аргументом в пользу того, что электричество — всего лишь возмущение эфира, а не действие отдельных частиц. Другими словами, все будущее современной физики зависело от успеха или неуспеха обнаружения и измерения невероятно маленьких электрических зарядов.
Невероятные трудности, связанные с определением величины e, наглядно проиллюстрированы экспериментами Гарольда А. Вильсона. Он использовал конденсационную камеру, в которой насыщенный влагой воздух образует конденсат. Он также предположил, что капли воды концентрируются вокруг одиночных заряженных ионов в стеклянной камере. Взяв это за основу, он начал измерять скорость, с которой падали образовавшиеся капли. Эта величина зависела от веса и размера капли, а также от вязкости газовой среды. Г. А. Вильсону удалось измерить эти факторы с определенной долей точности. На этой, начальной, стадии эксперимента заряд иона никоим образом не влиял на поведение облака в камере. Но Вильсон затем изменил процедуру, поместив облако в электрическое поле, под действием которого капли стали падать на дно камеры быстрее, чем капли, увлекаемые просто силой тяжести. Таким образом, можно было попытаться определить величину зарядов самих ионов. Дело в том, что скорость, с которой капли устремляются к аноду, зависит от величины заряда этих капель. Г. А. Вильсону наконец удалось рассчитать среднее значение e, которое равнялось -3,1 x 10-10 ед. СГСЭ.
Никто, однако, не рассматривал этот эксперимент как имеющий чрезвычайную важность, поскольку Вильсону и другим ученым, повторявшим его эксперимент, не удалось избавиться от множества мешавших факторов. Наиболее значимым из них была скорость испарения воды в каплях. Вильсону и его коллегам-атомистам пришлось расширить диапазон погрешности при расчете среднего значения e, которое у них изменялось от -2,0 x 10-10 до -4,4 x 10-10 ед. СГСЭ. Хотя Вильсон чувствовал, что медленно, но все-таки подходит к получению точного значения e, он понимал, что его результаты работают на тех теоретиков, которые придерживаются противоположных взглядов. Вместо того чтобы признать, что разброс полученных значений e отражает действие целого комплекса факторов, теоретики из противоположного лагеря объясняли их наличием некоторого континуума электрических эффектов, вполне укладывающихся в теорию возмущений электромагнитного эфира. Итак, образовался тупик.
Аналогичные эксперименты, проводимые Томсоном, Резерфордом и Ч. Т. Р. Вильсоном, страдали тем же недостатком. Неточность их экспериментов означала, что они могут предложить величину e, рассчитанную на основе средних статистических значений, которые не образуют даже статистическое распределение. Сторонники эфира считали, что высокая изменчивость результатов — ключевое свидетельство в их пользу, ведь именно это и предсказывала их теория. В такой ситуации атомисты могли победить, только проведя блестящий эксперимент и получив величины е, плотно расположенные вокруг среднего значения, а все остальные значения электрических зарядов — ему кратные. Именно такой эксперимент и задумал Роберт Милликен.
НЕМНОГО УДАЧИ И ПРОРЫВМилликен нисколько не сомневался в правоте корпускулярной теории, а потому особое внимание он обратил на слова Резерфорда, утверждавшего, что главным недостатком эксперимента Вильсона было то, что в конденсационных камерах происходило испарение воды. Предотвратить испарение исключительно трудно, поэтому Милликен вместо этого решил измерить его скорость, для чего пришлось воспроизвести все прежние эксперименты. Поначалу Милликен попытался использовать электрическое поле, чтобы стабилизировать состояние верхнего слоя конденсата, противодействуя его падению. Это было необходимо для того, чтобы ничто не мешало ему измерить скорость испарения. В результате эксперимент дал неожиданные, но полезные результаты. Даже подавая 10 000 вольт в верхнюю часть конденсата, Милликену не удалось его удержать. Вместо этого он наблюдал, как большая часть конденсата почти полностью исчезла, поскольку возмущенные полем капли стали энергично отталкиваться друг от друга.
Милликен был действительно великим ученым: он сразу оценил значимость этого наблюдения. Прежние эксперименты Резерфорда, Бегемана и Вильсона строились непосредственно вокруг конденсата, их не интересовали отдельные капли. Они заранее принимали, что каждая капля имеет один и тот же заряд. Но то, что увидел Милликен, напоминало последствия землетрясения в районах массовой застройки: хотя большинство зданий, как правило, тут же разрушается, некоторым, обладающим достаточной сейсмостойкостью, удается устоять. Аналогичным образом в конденсационной камере Милликена почти все капли исчезли, но несколько капель все же осталось.
Эти несколько зависших капель, размышлял Милликен, имеют как раз те массу и заряд, которые необходимы для того, чтобы электрическое поле скомпенсировало эффект гравитации. Тогда получалось, что изначальный конденсат состоял из капель, с разными зарядами. Остатки конденсата натолкнули его еще на одну мысль. Как он впоследствии писал в своей статье, датированной 1910 годом, эти замершие на одном месте отдельные капли «стали первым убедительным и неопровержимым доказательством в пользу единичности структуры электричества». Размышлял он довольно просто. Совпадение зарядов отдельных капель и противодействующих им сил было настолько точным, что их нахождение на одном месте красноречиво говорило в пользу наличия стандартной шкалы измерения электрических зарядов. Бесконечно меняющиеся возмущения в эфире никогда бы не смогли дать такого совпадения.
Результаты, полученные Милликеном, не ограничивались только этим наблюдением. Меняя электрическое поле, он получил возможность выбирать нужные ему капли и удерживать их неподвижно, подавая соответствующее напряжение. Снятие напряжения приводило к тому, что капли беспрепятственно падали и можно было определить их массу, пользуясь дифференциальными уравнениями сопротивления воздуха для сфер различного размера. Эти формулы и две полученные им величины позволяли рассчитать электрический заряд каждой капли. Многократно проделав этот эксперимент, Милликен получил огромное удовлетворение оттого, что отношение между зарядами было именно таким, как предсказывала атомная теория. «Величины зарядов всегда находились в пределах погрешности измерений моего секундомера, — писал он впоследствии, — т. е. 1, 2, 3, 4 или какое-то иное число, кратное минимальному заряду капли, который мне удавалось измерить». Это наименьшее число оказалось зарядом одного электрона. Что еще более примечательно, во время этих экспериментов, когда капля удерживалась в камере, часто было видно, как она дрейфует в электрическом поле. Милликен быстро понял, что здесь он наблюдает атмосферные ионы, которые «садились» на каплю, меняя ее электрический заряд. «Мы могли наблюдать тот самый момент, когда ион впрыгивал в каплю или выпрыгивал из нее!» Его восхищению не было предела.
ЗАРЯЖЕН, ЗНАЧИТ, ВИНОВЕНВ феврале 1910 года Милликен опубликовал описание своего нового метода в престижном «Философском журнале»[4]. Приняв значение e равным -4,65 x 10-10 ед. СГСЭ, он представил данные, на которых основывалась эта цифра. Стилистически эта статья выглядела очень необычно. Проведя серию экспериментов, физики обычно решают, результаты каких экспериментов учитывать, а каких — нет, ведь некоторые опыты оказываются неудачными. Есть случаи, когда полученные данные столь неожиданны, что логично объяснить их вкравшейся ошибкой. Правда, стремление понять, почему появился вдруг такой странный результат, иногда приводит к Нобелевской премии. Но чаще всего он возникает из-за того, что один из исследователей просто не сумел соблюсти выбранную методику. Вот как об этом пишет американский генетик Феодосий Добжанский[5]:
Лишь некоторым экспериментаторам везет настолько, что во всех их экспериментах не бывает ошибок или неудач, поэтому нет ничего удивительного в том, что такие ошибки случаются… Вероятность получения ложных результатов очень высока, и потому между учеными существует негласная договоренность не учитывать необъяснимые результаты.
Слова Добжанского указывают на то, что исключение отдельных результатов — не обязательно порочная научная практика. Вероятность того, что вместе с водой выплеснут и ребенка, очень мала. Тем не менее ученые редко признаются в том, что подвергают результаты исследований определенной селекции. Большинство из них инстинктивно делают вид, будто они честно идут туда, куда ведут результаты их опытов. По крайней мере, в своей первой статье Милликен выглядел явным исключением из общего числа и производил впечатление очень простодушного человека: он описывал все свои опыты, отмечая каждый эксперимент одной, двумя или тремя звездочками в зависимости от того, насколько удачно, по его мнению, тот прошел. Его расчеты среднего значения е включали дифференциальное статистическое взвешивание в зависимости от того, сколько звезд получил эксперимент.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.