Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма Страница 8

Тут можно читать бесплатно Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма. Жанр: Научные и научно-популярные книги / Научпоп, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма

Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма» бесплатно полную версию:
Пьер де Ферма — исключительная личность в истории науки: будучи адвокатом по профессии, он посвящал математике только свободные часы. Его научное наследие по большей части сохранилось в виде писем, которыми он обменивался с другими светилами своего времени, такими как Марен Мерсенн, Блез Паскаль или Рене Декарт. Гениальность этого французского ученого, несмотря на его дилетантизм, проявилась в разнообразных областях: в теории вероятностей, математическом анализе и особенно в теории чисел, в рамках которой он выдвинул гипотезу, озадачившую самых значительных математиков на более чем три века. Историю решения задачи, известной как Великая теорема Ферма, можно назвать одной из самых красивых легенд научного мира.

Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма читать онлайн бесплатно

Luis Alvarez - Самая сложная задача в мире. Ферма. Великая теорема Ферма - читать книгу онлайн бесплатно, автор Luis Alvarez

Нерешенная проблема — как стена. Математики, которые подступаются к ней, должны обладать соответствующим арсеналом, чтобы снести ее. Некоторые задачи просто нельзя разбить с помощью примитивного "оружия". Точно так же, как римская катапульта была бы абсолютно бесполезна против современного авианосца, некоторые математические инструменты не годятся для решения определенных проблем, и ученым приходится ломать себе голову, изобретая новые стратегии атаки и новое вооружение. Современная история математики — это в значительной мере история изобретения более совершенного арсенала.

У Ферма было такое оружие, о котором одно или два предыдущих поколения даже не мечтали; но его было недостаточно, чтобы решить его задачу. С другой стороны, вполне вероятно, что он этого не знал. Возможно, тулузский юрист был ослеплен блеском стали того арсенала, который изобрел его выдающийся предшественник Виет, а также он сам, и не подозревал, что не все стены разрушаются под его ударами. Девизом Виета была фраза: Nullum problema solver ("Нет проблем без решений"). Сегодня оптимизм ученого можно назвать чрезмерным, но тогда никто этого не знал.

Математики используют в своих доказательствах не меньшее количество стратегий, чем полководцы в битве, а возможно, даже и большее. Во времена Ферма число стратегий значительно увеличилось с изобретением символической алгебры; одну из тех, что использовал Ферма, изобрел он сам: метод бесконечного спуска, который происходит из доказательства от противного. В общих словах данный метод заключается в том, чтобы принять за гипотезу тезис, противоречащий теореме, которую мы хотим доказать, и искать свойство, справедливое для заданного числа п. Затем доказывается, что если данное свойство справедливо для числа n, оно также справедливо для числа меньше n, как правило n - 1.

Но здесь возникает проблема! Если это так, то существует бесконечная последовательность натуральных чисел, каждый раз все меньших, а мы знаем, что это не так. Самое маленькое натуральное число равно 1. Таким образом, у нас есть противоречие, из которого следует, что наша гипотеза ошибочна.

Так Ферма доказал, что его знаменитая теорема истинна по крайней мере для частного случая, при n = 4, в записи, которая почти поместилась на другом поле той же самой "Арифметики" Диофанта. И мы говорим "почти", потому что Ферма опустил, как обычно, некоторые этапы доказательства.

Мало что еще можно сказать о работе Ферма над доказательством его легендарной теоремы, поскольку он практически больше ничего не оставил на эту тему; зато мы можем проследить ее судьбу в течение тех 350 лет, которые Ферма не мог увидеть.

ОТ ЭЙЛЕРА ДО СОФИ ЖЕРМЕН

Как уже было сказано, Великая теорема Ферма стала известна после его смерти. С другой стороны, теория чисел, над которой работал математик, не имела большого успеха среди его современников, так как они больше интересовались другими математическими проблемами того времени. Поэтому публикация комментариев Ферма к "Арифметике" Диофанта не имела большого резонанса. Ученые того времени не понимали его увлеченности этими "бессмысленными" задачками, которые казались больше похожими на загадки и головоломки, чем на важные математические проблемы.

ЛЕОНАРД ЭЙЛЕР

Швейцарский ученый Леонард Эйлер (1707-1783) был знаковой фигурой в математике XVIII века. Его работы посвящены практически всем областям математики, существовавшим в тот момент, а также разнообразным проблемам физики и ряда других наук.

Эйлер занимал выдающиеся должности в академиях наук России и Пруссии во время правления Екатерины Великой и Фридриха II, где он общался на равных с королями и мыслителями уровня Вольтера. Ученый был одноглазым и в конце концов полностью потерял зрение, но это не помешало ему каждую неделю писать по статье.

У него была чудесная память, которая позволяла ему доказывать теоремы в уме, а также без проблем читать наизусть"Энеиду" от начала и до конца. Рассказывают, что когда Екатерине надоели атеистические рассуждения Дидро, она попросила Эйлера унизить его публично. Тот подошел к философу и выпалил:

"(a+bn)/n = х, следовательно, Бог существует. Отвечайте!"

Дидро не знал, что ответить. Однако некоторые историки сомневаются в истинности этой истории. Также Эйлеру принадлежит одна из самых красивых формул в математике: еn + 1 = 0.

Однако прусский математик Христиан Гольдбах (1690- 1764; что любопытно, он знаменит благодаря своей до сих пор не доказанной гипотезе, не сильно отличающейся от задач, которыми занимался Ферма) начал изучать работы Ферма и привлек к ним внимание самого великого математика своего времени. Этим математиком, родившимся примерно через 40 лет после смерти Ферма, был Леонард Эйлер.

СОФИ ЖЕРМЕН

Как и все женщины-ученые, жившие до XX века, парижский математик Софи Жермен (1776-1831) столкнулась со множеством проблем в своей научной карьере. Она не получила официального образования и пользовалась для учебы записками Политехнической школы. Софи также переписывалась с великими математиками своего времени, такими как Жозеф Луи Лагранж, Адриен Мари Лежандр и Гаусс, выдавая себя за некоего "господина Леблана". Гаусс узнал правду о ее личности при самых любопытных обстоятельствах, которые только можно себе представить. Когда наполеоновские войска заняли территорию Германии, где жил Гаусс,

Жермен испугалась за жизнь своего корреспондента, вспомнив пример Архимеда, и написала генералу Пернети, другу ее семьи, попросив его защитить гения. Пернети послал отряд, от которого Гаусс узнал о хлопотах Софи. Тронутый и удивленный, Гаусс написал Жермен, заметив, что из-за глупых предрассудков эпохи женщина вынуждена действительно быть человеком, обладающим "благородной смелостью, необычайным талантом и наивысшей гениальностью", чтобы победить все препятствия.

Итак, любопытство Эйлера было разбужено комментариями Гольдбаха, и швейцарец начал анализировать работы Ферма. Среди прочего он доказал: тот ошибся, утверждая, что числа, известные как "числа Ферма", всегда простые. Также Эйлер изучал Великую теорему Ферма. И хотя он не смог доказать ее для общего случая, ему удалось доказать ее для n = 3. Так что на тот момент, когда Эйлер оставил данную тему, было доказано два случая... или на самом деле бесконечное их число, поскольку если доказать теорему для n = 3, результат также справедлив для всех чисел, кратных 3, то есть для последовательности 6, 9, 12, 15... Так происходит потому, что любая степень, кратная трем, может быть записана в виде числа в кубе. Например, 46 = 163. Кстати, доказательство самого Ферма для n = 4 справедливо также для чисел, кратных 4.

Если бы мы могли доказать теорему для простых чисел, поскольку любое число кратно простым числам, мы бы доказали ее в целом. Однако, к сожалению, доказательство для п - 5 оказалось гораздо сложнее, чем представлял себе Ферма. В любом случае, тот факт, что Эйлер заинтересовался работами Ферма, вызвал интерес к теории чисел. Благодаря Эйлеру и Карлу Фридриху Гауссу (1777-1855) данная дисциплина превратилась в уважаемую математическую теорию, как этого и хотел Ферма.

Гаусс отзывался о Великой теореме Ферма достаточно презрительно и считал работу над ней потерей времени. Возможно, он и сам пытался решить когда-то эту задачу, но, потерпев неудачу и разочаровавшись, повел себя подобно лисе из басни про лису и виноград. Но другие математики его времени подошли к задаче очень серьезно. Например, Софи Жермен открыла, что для простых чисел, теперь носящих ее имя (числа р, где р — простое число, и Р = 2р + 1 также простое), с учетом некоторых требований, которым должны соответствовать Р и р (в частности, что р не является делителем произведения трех неизвестных — х, y, z — из уравнения Ферма), теорема Ферма верна для n = p. С помощью этого подхода Жермен удалось доказать теорему Ферма для всех простых чисел, меньших 100. К сожалению, ее работа не была опубликована при жизни.

Адриену Мари Лежандру и Густаву Лежёну Дирихле удалось доказать теорему для n = 5. При этом они использовали математические инструменты, которых не существовало в XVII веке, такие как теория квадратичных форм. Доказательство теоремы является относительно простым для n = 3 и n = 4, но оно становится гораздо сложнее начиная с n = 5 и недоступно обычным методам начиная с n = 23.

В любом случае, Софи Жермен была первой, кто попытался найти решение для целого класса чисел, а не для частных случаев; также она открыла новые подходы к решению задачи, которыми продолжали пользоваться в последующие годы.

ЛАМЕ, КОШИ И КУММЕР

В следующие десятилетия были предприняты попытки Габриеля Ламе (1795-1870) и Огюстена Луи Коши (1789-1857) доказать теорему. Ламе удалось найти решение для n = 7, и на бурном заседании Французской академии наук он объявил, что вот-вот докажет ее для общего случая. Он в общих чертах обрисовал свою стратегию, которая основывалась на алгебре комплексных чисел. Но настоящая сенсация произошла, когда Коши, который был одним из самых значительных математиков своего времени, встал и объявил, что он тоже вот-вот получит доказательство и его подход очень похож на метод Ламе.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.