Майкл Газзанига - Кто за главного? Свобода воли с точки зрения нейробиологии Страница 10
- Категория: Научные и научно-популярные книги / Психология
- Автор: Майкл Газзанига
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 59
- Добавлено: 2019-01-29 14:29:27
Майкл Газзанига - Кто за главного? Свобода воли с точки зрения нейробиологии краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Майкл Газзанига - Кто за главного? Свобода воли с точки зрения нейробиологии» бесплатно полную версию:Загадка повседневной жизни заключается в том, что все мы, биологические машины в детерминированной Вселенной, тем не менее ощущаем себя целостными сознательными субъектами, которые действуют в соответствии с собственными целями и свободно принимают решения. В книге “Кто за главного?” Майкл Газзанига объясняет, несет ли каждый человек личную ответственность за свои поступки. Он рассказывает, как благодаря исследованиям расщепленного мозга был открыт модуль интерпретации, заставляющий нас считать, будто мы действуем по собственной свободной воле и сами принимаем важные решения. Автор помещает все это в социальный контекст, а затем приводит нас в зал суда, показывая, какое отношение нейробиология имеет к идее наказания и правосудию.
Майкл Газзанига - Кто за главного? Свобода воли с точки зрения нейробиологии читать онлайн бесплатно
Когда мы начали изучать расщепленный мозг, то наткнулись на еще одно поразительное анатомическое отличие. В мозге шимпанзе и макака-резуса передняя комиссура — пучок нервных волокон, соединяющий между собой средние и нижние височные извилины двух полушарий, — связана с передачей визуальной информации53. Однако благодаря результатам более давних исследований, проводившихся при участии пациентов с расщепленным мозгом, мы знали, что у человека передняя комиссура передает не зрительную информацию, а обонятельную и слуховую: структура та же, функция иная. Другое яркое отличие связано с главным зрительным путем, который соединяет сетчатку глаза с первичной зрительной корой в затылочной доле (задней части мозга) и у обезьян, и у людей. При повреждении зрительной коры обезьяны все еще могут видеть объекты в пространстве, различать цвета, яркость, ориентацию и образы54. Однако люди с теми же поражениями слепнут и не могут выполнять эти задачи. Это опять-таки подчеркивает, что одни и те же структуры у разных биологических видов могут выполнять различные функции и что нам следует относиться с подозрением к межвидовым обобщениям.
Новая методика, диффузионно-тензорная визуализация, фактически позволяет составить карту нервных волокон. Мы получили возможность понять, как человеческий мозг организован локально, — увидеть это, зарегистрировать и измерить. С помощью этой технологии уже найдены дополнительные доказательства того, что топология соединений нейронов изменялась. Например, выяснилось, что дугообразный пучок — нервный пучок белого вещества, который у человека связан с речью, — устроен совершенно по-разному у шимпанзе, макаков и людей55.
Разные типы нейроновНесколько лет назад я задался следующим вопросом: кто-нибудь размышлял над тем, отличаются ли нервные клетки разных биологических видов друг от друга, или же они все одинаковы? Я спросил об этом нескольких ведущих нейробиологов: “Если бы вы регистрировали электрические импульсы от среза гиппокампа в чашке Петри, не зная, образец ли это мозга мыши, обезьяны или человека, смогли бы вы определить, что именно перед вами?” В то время большинство ответов звучало примерно так: “Клетка есть клетка есть клетка”[7]. Это универсальная единица обработки информации, отличающаяся у пчелы и у человека только размером. Если надлежащим образом масштабировать нейроны мыши, обезьяны и человека, невозможно будет увидеть между ними никакой разницы. Однако сейчас преобладает еретическое представление, которое возникло в последние десять лет: все нейроны неодинаковы, а некоторые их типы встречаются лишь у определенных биологических видов. Более того, тот или иной тип нейронов якобы может обладать уникальными свойствами у того или иного вида.
Первое доказательство, что различия между нейронами человека и обезьяны на микроскопическом уровне существуют, обнаружил нейроанатом Тодд Пройсс с коллегами в 1999 году. Они увидели, что в первичной зрительной коре в затылочной доле мозга нейроны одного из подслоев (4A) у человека структурно и биохимически отличаются от соответствующих нейронов других приматов. Слой, который составляют эти нейроны, — часть системы, передающей информацию о распознании объекта от сетчатки через зрительную кору затылочной доли в височную долю. В мозге человека эти нейроны образуют сложную сетеобразную структуру — в отличие от простой вертикальной, как у других приматов. Открытие было крайне неожиданным, поскольку, по выражению Пройсса, “в нейробиологии зрения предположение о том, что между макаками и людьми нет значимых различий, — сродни догмату веры”56. Пройсс высказал догадку, что такое эволюционное изменение в организации нейронов могло обеспечить человеку превосходную способность различать объекты на окружающем фоне.
Эти результаты заставили ученых задуматься о том, что большинство наших представлений о структуре и функции зрительной системы опираются на выводы из исследований главным образом макаков. Как уже отмечалось, подобные открытия, демонстрирующие неидентичность коры мозга у людей и обезьян, по мнению Пройсса, как минимум обременительны. Обобщения нейробиологов о нейрональной архитектуре, организации мозга, связях и обусловленной всем этим работе основывались на результатах, полученных при изучении лишь нескольких биологических видов, а именно макаков и крыс. Насколько ошибочно такое основание — еще предстоит выяснить. Это заблуждение явно не ограничивается зрительной системой.
Даже основной “кирпичик” мозга, пирамидный нейрон (названный так за форму его тела, похожую на конфетку Hershey’s Kisses в виде купола), привлек пристальное внимание. В 2003 году, после того как специалисты по сравнительной нейробиологии десятилетиями восхваляли одинаковость пирамидных нейронов у всех видов, австралийский ученый Гай Элстон подтвердил и напомнил нам оригинальные догадки Рамон-и-Кахаля. Как Дэвид Примак беспокоился, что при сравнении поведения разных видов сходство интерпретируется как равенство, так и Элстон сетует, что среди ученых, занимающихся сравнительной нейробиологией коры мозга млекопитающих, “к сожалению, слово ‘подобный’ многими толковалось как ‘точно такой же’”. Это породило широко распространенное мнение, будто кора мозга однотипна и состоит из одних и тех же повторяющихся структурных единиц, одинаковых у разных видов57. По мнению Элстона, в этом нет никакого смысла: “Если нейронная сеть префронтальной коры — области мозга, обычно вовлеченной в когнитивные процессы, — такая же, как и сети других зон коры, каким образом она может осуществлять столь сложную функцию, как человеческое мышление?” Это было непонятно и Рамон-и-Кахалю, посвятившему всю свою жизнь исследованиям, ведь он еще сто лет назад заключил, что мозг не состоит из одинаковых повторяющихся сетей.
Элстон и другие ученые обнаружили, что разветвленность и количество базальных дендритов у пирамидных нейронов префронтальной коры больше, чем в других кортикальных зонах. Поэтому дендриты этих нейронов обеспечивают каждому из них больше связей, чем в других частях мозга. Теоретически это означает, что отдельные нейроны префронтальной коры получают большее количество более разнообразных входных сигналов от большего участка коры, чем их сородичи в других частях мозга. На самом деле различия между пирамидными клетками не ограничиваются только теми, которые связаны с расположением в мозге. Элстон и его коллеги выявили также, что пирамидные клетки заметно различаются по структуре среди приматов58.
Кроме того, известно, что у разных видов нейроны по-разному отвечают на раздражение. В процессе нейрохирургической операции, когда вырезают опухоль, вместе с ней удаляют и немного здоровых нейронов. Гордон Шеперд, нейробиолог из Йельского университета, помещал такие человеческие клетки в тканевую культуру и регистрировал их электрические импульсы, генерируемые в ответ на внешнее раздражение, а затем проделывал то же самое с нейронами морских свинок. Он обнаружил, что дендриты нейронов этих двух биологических видов отвечают на внешние стимулы по-разному59.
Все еще разные типы нейроновВ начале 1990-х годов Эстер Нимчински с коллегами в Школе медицины Маунт-Синай решила заново изучить достаточно редкий и забытый тип нейронов, впервые описанный неврологом Константином фон Экономо в 1926 году60. Длинный, тонкий нейрон фон Экономо (по-другому — веретенообразный) отличается от более “коренастого” пирамидного нейрона. Нейрон фон Экономо больше в четыре раза. Хотя у обоих есть по одному апикальному (отходящему от вершины клетки) дендриту, у веретенообразного нейрона, в отличие от ветвистого пирамидного, есть также только один базальный дендрит (с противоположной стороны клетки). Кроме того, нейроны фон Экономо встречаются только в особых участках мозга, связанных с когнитивной деятельностью, — в передней поясной и фронтоинсулярной коре; недавно их также обнаружили в дорсолатеральной префронтальной зоне у людей61 и слонов. Среди приматов эти нейроны найдены только у человека и человекообразных обезьян62, причем у людей как абсолютное их количество, так и относительное больше. В то время как у человекообразных обезьян насчитывается в среднем 6,95 тысячи таких нейронов, у взрослого человека их 193 тысячи, у ребенка четырех лет — 184 тысячи, а у новорожденного — 28,2 тысячи. Из-за локализации, структуры, биохимии этих клеток и из-за связанных с ними болезней нервной системы нейробиолог Джон Оллман из Калифорнийского технологического института и его коллеги63 предполагают, что нейроны фон Экономо — часть нервной сети, вовлеченной в социальное осознание, и что они могут участвовать в принятии быстрых, интуитивных социальных решений. В линии гоминид эти клетки, судя по всему, возникли у общего предка высших приматов около 15 миллионов лет назад. Любопытно, что из млекопитающих эти нейроны были обнаружены исключительно у социальных животных с большим мозгом: у слонов64, у некоторых видов китов65 и — совсем недавно — у дельфинов66. Причем нейроны фон Экономо у них появились независимо. Это пример конвергентной эволюции — процесса, в котором неродственные группы организмов приобретают сходные признаки. Хотя нейроны фон Экономо присущи не только людям, их количество в нашем мозге беспрецедентно.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.