Евгений Елизаров - Сколько будет 2+2? Страница 12
- Категория: Научные и научно-популярные книги / Психология
- Автор: Евгений Елизаров
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 35
- Добавлено: 2019-01-30 16:24:07
Евгений Елизаров - Сколько будет 2+2? краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Евгений Елизаров - Сколько будет 2+2?» бесплатно полную версию:Книга-открытие. Читая ее, обнаруживаешь, что самые элементарные истины неотрывны от общих представлений об окружающем нас мире, что невозможно понять даже очевидное, если не выработана способность свободно ориентироваться в их сфере. Любая идея всегда оказывается вплетенной в глобальный контекст всей человеческой культуры, и полнота осмысления предмета зависит лишь от степени овладения последней. Невозможно стать профессионалом, замыкаясь в узком «туннеле» специализации.
Евгений Елизаров - Сколько будет 2+2? читать онлайн бесплатно
Ответ Кант находит в том, что в основе математики лежат не какие-то объективные истины, не основополагающие законы природы, но жесткие схемы, в соответствии с которыми только и может функционировать наше собственное сознание. (Строго говоря, этот вывод нисколько не противоречил тому убеждению, согласно которому математические принципы являлись одними из принципов организации породившего этот мир Божественного разума. Ведь человек – это образ и подобие Бога, и если предположить, что над-материальное Существо могло оставить Свое подобие только в этой же над-материальной духовной сфере, человеческий разум оказывался отпечатком Божественного. А значит, и сам обладал возможностью предписывать какие-то законы нашему миру.)
По Канту в основе всех математических выводов лежат врожденные представления человека о таких предельно общих и отвлеченных началах, как пространство и время. Только созерцая градуированное нашим собственным сознанием пространство и по-разному комбинируя в собственной же «голове» какие-то его доли, мы можем получить какие бы то ни было представления о геометрии окружающего нас мира. Точно так же, только операции с равными интервалами скрыто созерцаемого нашим же сознанием времени дают нам представление обо всех числах. Поэтому все наши представления о количественной структуре реальной действительности опираются именно на эти внутренние созерцания. И не случайно Кант называет весь посвященный математике раздел своего исследования «трансцендентальной эстетикой» (не путать с трансцендентной!).
Таким образом, сам процесс и восприятия, и дешифрации, и последующей обработки всех тех сигналов, которые посылает нам вся окружающая нас среда, может соответствовать только тем схемам, которые порождены логикой именно этой «эстетики». Все то, что выходит за пределы ее жесткого заранее сформированного контура, обязано вообще проходить мимо нашего сознания. Не задевая его, как не задевают сознания не знающего грамоты человека все те откровения, которые изложены в книгах. Человек способен организовывать и осознавать свой собственный опыт лишь в строгом соответствии с ними. Поток всех чувственных восприятий вынужден просто подстраиваться под них. Они не просто неотъемлемая часть нашего общего умственного багажа, – это те единственно возможные рациональные схемы, в соответствии с которыми только и может обрабатываться и систематизироваться непрерывный поток сигналов, исходящих от внешней действительности. Поэтому вся математика представляет собой лишь выявление и анализ тех логических следствий, к которым эти схемы уже изначально (говоря языком Канта, – априори) обязывают нас.
Словом, и та строгая математическая гармония и тот жесткий порядок, которые царствуют в природе, отнюдь не свойственны ей самой по себе, но в действительности лишь проецируются на внешний мир нашим собственным разумом. Именно и только он предписывает миру все обязательные для исполнения законы.
Мы привели ссылку на Канта как бы в порядке самооправдания, только для того, чтобы показать, что сомнения в абсолютной истинности стереотипного ответа на вынесенный в заглавие вопрос – это вовсе не аберрация сознания, не кульбит софистической мысли, имеющий целью только запутать собеседника. Строго говоря, вопрос о том, почему получаемые чисто аналитическим путем, что говорится, «на кончике пера» математические истины все-таки подтверждаются нашим опытом, не решен и сегодня. Больше того, решать его, по-видимому, придется еще не одно столетие. И как бы в подтверждение этого мы видим, что не только сложнейшие, требующие предельного напряжения нашего интеллекта, построения высшей математики, но даже простейшая арифметическая задача обнаруживает сильную зависимость и от каких-то общих господствующих в совокупном сознании цивилизации идей, и от принятой в обществе методологии систематизации явлений. Оказывается, что вне этого «над-математического» аппарата даже простейшая арифметическая задачка никакого решения не имеет.
С Кантом спорят и по сию пору. И до сего дня очень многие видят в математике выражение некоторой абсолютной истины, которая кристаллизовала в себе обнаженную до голой схемы структуру самой объективной реальности. Однако и через двести лет с лишком многие соглашаются с ним…
Мы не ставим своей задачей разрешить вопрос о соотношении результатов абстрактных математических построений и реальной структуры окружающего нас мира. Но, не тяготея ни к одной из этих полярных позиций, мы вправе смотреть на математику, как на методологию человеческого познания. Вернее сказать, как на специфическую проекцию какой-то единой методологии познавательной деятельности человека, ибо математика, разумеется, не исчерпывает эту роль полностью.
Но если так, то любое противоречие тому результату, который прогнозируется ею, должно выступать не только как индикатор ошибки, но и как побудительный стимул к движению в каком-то новом направлении. Важно понять, что несоответствие результата «сложения» любой заранее затверженной истине – это далеко не всегда ошибка в построениях, не всегда дефект расчета, и способность разглядеть в этом несоответствии ориентир поиска того, «что» именно «будет» в результате такой операции, – представляет собой обязательный элемент квалификации исследователя. Если нет такой способности, нет и настоящего исследователя, есть лишь простой ремесленник.
Кстати, этот вывод остается справедливым, абсолютно независимо от того, что именно мы готовы признать в этой древней науке. Если, вслед за немецким философом (и крупным математиком, кстати, именно Канту принадлежит мысль о том, что в любой науке ровно столько истины, сколько в ней математики) мы ограничим ее только сферой «трансцендентальной эстетики», мы обязаны будем согласиться с тем, что любая количественная аномалия потребует не только перепроверки всех наших логических построений, но и дальнейшего исследования. Если же, напротив, мы увидим в ней отражение не зависящих ни от нашей воли, ни от нашего сознания отношений между явлениями внешнего мира, результат останется тем же самым: мы обязаны будем видеть в любом несоответствии указание не только на тщательную перепроверку выполненной процедуры, но и на необходимость проведения в первую очередь качественного анализа результата.
Словом, методологическая роль математики заключается в том, что, как бы мы ни относились к результату измерения и сопоставления, любая количественная аномалия безупречно выполненного расчета (понятно, что о математических ошибках речи вообще не может быть) должна расцениваться нами как стимул к дальнейшему поиску.
Но если так, то и обнаруживаемые нами противоречия в детстве затверженному выводу требуют своего разрешения, иными словами, обязывают нас продолжить исследование.
Поэтому вернемся к исходному предмету нашего анализа.
Мы видели, что для количественного сравнения разнородных вещей необходимо найти какой-то объединяющий их круг. Что это значит? Разделяемое многими решение заключается в последовательном восхождении от уровня единичных вещей, обладающих какими-то индивидуальными особенностями, к более широким обобщениям.
Операция обобщения представляет собой одну из ключевых процедур формальной логики, законам которой обязано подчиняться любое научное исследование. Она предполагает, что в ходе ее строгого и точного выполнения от анализируемых нами явлений последовательно отбрасываются все те отличительные их особенности и характеристики, которые присущи им и только им. Если эта операция выполняется правильно, то в результате должны остаться только те свойства, которые одновременно присущи сразу всем явлениям анализируемого круга. Именно совокупность этих свойств и образует собой содержание какого-то нового обобщающего понятия.
В схематичном виде ее можно представить следующим образом. Вообразим, что у нас есть три условных объекта (x, y, z) обладающих какими-то своими условными же характеристиками: x (a, b, c), y (a, c, d), z (b, c, e). Видно, что свойства «a», «b» присущи только двум объектам из трех, свойства «d» и «e» – только одному. Лишь качество «с» присуще сразу всем трем. Таким образом, мы вправе отбросить характеристики «a», «b», «d», «е» и выделить свойство «с» как объединяющее их основание. Именно по основанию «с» и оказывается возможным проводить количественное сравнение всех объектов.
Очерченная здесь интеллектуальная операция имеет большое значение в систематизации нашего мышления. Строго говоря, наука вообще начинается именно с обобщений. Дело в том, что индивидуальные характеристики вещей, процессов, явлений, то есть частные свойства, которые присущи лишь единичным объектам, не являются предметом научного исследования. Задача науки как раз и состоит в том, чтобы выявлять общие законы, правила, принципы. А это всегда абстрагирование от всего единичного.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.