Виктор Кандыба - СК-метод развития человека Страница 34
- Категория: Научные и научно-популярные книги / Психология
- Автор: Виктор Кандыба
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 112
- Добавлено: 2019-01-30 12:10:15
Виктор Кандыба - СК-метод развития человека краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Виктор Кандыба - СК-метод развития человека» бесплатно полную версию:Автор – легендарный киевский ученый, Президент Всемирной ассоциации профессиональных гипнотизеров при ЮНЕСКО, академик Виктор Михайлович Кандыба впервые в мире публикует новейшее сенсационное открытие русских ученых – психотехнику высшей СК – феноменологии.Сенсационная книга академика В.М. Кандыбы издана под эгидой ЮНЕСКО и рекомендуется массовому читателю в качестве учебного пособия для самостоятельного обучения аутотренингу.
Виктор Кандыба - СК-метод развития человека читать онлайн бесплатно
Кратко поясним изложенные три положения. Прежде всего отметим, что биологические объекты наряду с большим числом общих характерных черт (наследственность, раздражимость, обмен веществ и т. д.) с физико-химической точки зрения имеют сходство в том, что их можно условно рассматривать как жидкие кристаллические образования. Имеется достаточно оснований для такого подхода: большое количество воды в клетках и тканях; роль воды в поддержании упорядоченной структуры живого, ее фазовые переходы в квазикристаллическом состоянии, важные для функционирования живого вещества; тиксотропные свойства биологических гелей и клеточных структур, биомембран в особенности, а также подвижность и легкость изменения свойств биологических веществ, и биомембран в частности, под влиянием самых различных физических факторов (магнитные, электрические, температур o ные и т. д.); наличие явлений, аналогичных плавлению жидких кристаллов, например пиноцитоз, и т. д.
Биологические объекты сближают с жидкими кристаллами и другие явления, например: неоднородность биомембран на поверхности, анизотропность свойств, благодаря которой в мембранах протекают процессы разной тензорной размерности (химические реакции и процессы переноса), сопряженность потоков, направляющихся во взаимно перпендикулярных плоскостях, наличие дальнего порядка в структуре биовдембран, полиформизм их структуры при изменении рН, ионной силы раствора, наличие определенного температурного интервала существования. Из сказанного выше видно, что исследователи вправе использовать в качестве ориентировочной приближенной модели жидкокристаллические образования и явления, протекающие в них, для интересующего нас анализа взаимодействия электромагнитного излучения с живым веществом.
В таком случае в живом организме при взаимодействии его жидкого квазикристаллического вещества с внешним электромагнитным полем возможны эффекты, которые связаны с квантовыми состояниями, например интерференцией, где существенны фазовые свойства (свойства когерентности) электронных состояний. Поскольку квантовые состояния рассматриваются как осцилляторы, взаимодействие которых зависит и от фазовых свойств, становится возможной молекулярная миграция энергии за счет связанных между собой осцилляторов, передача информации как передача параметров когерентности, что открывает широкие возможности для изучения и правильного понимания механизмов действия электромагнитного излучения на живые организмы, а также механизмов биоэнерготерапии.
При таком подходе становятся ясными описанные в научной литературе явления модифицирования радиобиологического действия различными физическими агентами: слабым электрическим током, электростатическими полями, магнитными полями – в том числе геомагнитным полем. Эти факторы, по-видимому, могут оказывать влияние путем изменения параметров когерентности, например фазы и амплитуды электронной волновой функции биологических квазикристаллических структур.
В механизмах электромагнитного воздействия на биологические объекты необходимо учитывать явления, происходящие на межфазных границах в силу развитой компартментации и отражающие уже надатомный уровень взаимодействия в биоструктурах. По мнению некоторых исследователей, ограниченность движения электрона, обусловленная малой толщиной слоев мембранных структур и характером их построения, указывает на возможность проявления в них различных квантовых эффектов за счет изменения расположения и количества энергетических уровней дискретного спектра электрона. Авторы работы делают вывод, что тонкие слои в мембранных структурах выполняют функции селективного приемника излучения, повышая чувствительность клеток к резонансному воздействию излучения. Таким образом, и на субклеточном уровне открываются возможности для проявления квантовых эффектов и объяснения их с помощью специфических особенностей биологического действия электромагнитного излучения.
В то же время известно, что на поверхности клеточных структур имеется двойной электрический слой, образованный заряженными химическими группами поверхности и диффузной оболочкой противоионов среды, компенсирующей заряд поверхности. При воздействии электромагнитного излучения на такие системы будут возникать индуктивные электрические токи на границе раздела фаз и разнообразные биологические реакции за счет изменения функций внутриклеточных структур. Но этот механизм близок к известным классическим описаниям действия радиации, в то время как нас интересуют новые подходы в этой области.
В настоящее время уже предложена такая новая модель взаимодействия мембраны (нервных) клеток с внешним электромагнитным излучением. Автор ее справедливо подчеркивает, что существующие экспериментальные данные указывают на прямое взаимодействие между внешним электромагнитным полем и внутренними глубоколежащими структурами на основе частотно-резонансного способа действия, и выводит даже эффективный гамильтониан для таких структур. Но автор цитируемой работы совершенно забывает, что такое взаимодействие требует необычного механизма связи, а именно биополевого взаимодействия на основе квантовых процессов, и поэтому предлагаемые им исследования сечения поглощения как функции частоты для разных биологических тканей не помогут вскрыть существа дела. В целом указанная работа весьма прогрессивная, хотя в ней нет анализа самого основного вопроса – о происхождении электрического поля мембран и тесно связанного с этим вопроса об электрическом поле живого организма в целом.
Наиболее правильной, на наш взгляд, является точка зрения о «биоэлектретном» происхождении электрического поля живых организмов. Как известно, электретом называется электронейтральное тело, обладающее объемной электрической поляризацией и обусловленным ею внешним электрическим полем. Исследования показали, что вблизи человека (и других живых организмов) регистрируются квазистатические электрические поля в несколько десятков вольтметр, не связанные с трибоэлектрическими зарядами. Подобно обычным электретам, эти поля существуют постоянно, восстанавливают свою исходную величину после испарения экранирующей водной пленки. Их основой, по-видимому, является непрерывная поляризация и деполяризация связанных зарядов живой ткани за счет конформационных изменений на молекулярном уровне.
Следует заметить, что в живых организмах выполняется и другое важное свойство, характеризующее обычные электреты: отставание деполяризации и реполяризации свободных зарядов от деполяризации и реполяризации связанных зарядов. Это происходит за счет того, что, несмотря на высокую электропроводность живых тканей (до 10~7 ом*1 см*1), изменение состояния части связанных зарядов в живом организме происходит быстрее, чем свободных зарядов, приводя к после-дующей деполяризации свободных зарядов и образованию внешнего электрического поля. По нашему мнению, основой этого является возможность быстрого протонного туннелиро-вания, наличие тс-электронных систем с обобщенными орбитами, по которым движение заряженных частиц может происходить гораздо быстрее, чем передвижение свободных зарядов в условиях сильной компартментации в клетках.
Дачные молекулярной биофизики также подтверждают правильность выдвигаемой гипотезы о биоэлектретном происхождении электрического поля живых организмов.
Связанные заряды биологических структур клетки (ионо-генные группы, полярные молекулы, гетерополярные связи в макромолекулах и т. д.) находятся в упорядоченном состоянии. Об этом свидетельствуют высокие дипольные моменты молекулярных, надмолекулярных и клеточных образований. Измерения показывают очень высокие значения дипольных моментов – до 103 дебая у белковых молекул, 104 дебая у вирусов и до 107 дебая у бактериальных клеток. Выражением этой упорядоченности является внешняя электризация в виде объемной электрической поляризации, векторы которой имеют характерную направленность у всех организмов, как животных, так и растений.
Связанные заряды в живых клетках подвергаются непрерывным изменениям вследствие конформационных перестроек в макромолекулах, изменениям их эффективного объема и формы, следствием чего является изменение распределения поверхностных электрических зарядов.
Признание биоэлектретной природы электрического поля живых организмов дает новые возможности для правильного биофизического анализа парапсихологических явлений, вооружает исследователей новой прогрессивной – моделью для познания механизма биологического действия биоэлектромагнитного излучения. Например, на этой основе может быть понято модифицирующее действие рук экстрасенса, воздействующего своим биополем на живые организмы, Процессы репарации в этом случае рассматриваются как производная функция от вышеописанного биоэлектретного состояния, и, по-видимому, они сводятся к восстановлению нативных электрических характеристик микро – и макроструктур живого организма.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.