Евгений Елизаров - Сколько будет 2+2? Страница 6

Тут можно читать бесплатно Евгений Елизаров - Сколько будет 2+2?. Жанр: Научные и научно-популярные книги / Психология, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Евгений Елизаров - Сколько будет 2+2?

Евгений Елизаров - Сколько будет 2+2? краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Евгений Елизаров - Сколько будет 2+2?» бесплатно полную версию:
Книга-открытие. Читая ее, обнаруживаешь, что самые элементарные истины неотрывны от общих представлений об окружающем нас мире, что невозможно понять даже очевидное, если не выработана способность свободно ориентироваться в их сфере. Любая идея всегда оказывается вплетенной в глобальный контекст всей человеческой культуры, и полнота осмысления предмета зависит лишь от степени овладения последней. Невозможно стать профессионалом, замыкаясь в узком «туннеле» специализации.

Евгений Елизаров - Сколько будет 2+2? читать онлайн бесплатно

Евгений Елизаров - Сколько будет 2+2? - читать книгу онлайн бесплатно, автор Евгений Елизаров

Таким образом, если «изъять» из нашего интеллектуального багажа все те неопределяемые общие представления об окружающем мире, которыми мы, сами того не замечая, постоянно пользуемся, немедленно рассыплется все, как рассыплется вся геометрия (и не одна только геометрия!), если вдруг исключить из нее аксиомы Евклида.

Мы сказали, что обыденное сознание или, что то же самое, здравый смысл – это просто сознание человека, не обремененного специальными навыками сложной интеллектуальной работы. Но нужно дополнить: с течением времени оно все больше и больше обогащается общими завоеваниями человеческой мысли, и многое и от формальной логики, и от диалектики, и от всех достижений науки ассимилируется им. Со временем оно становится гораздо строже и организованней, но ведь и уровень рутинных задач, который постоянно встает перед нами, тоже усложняется. Вот пример: если вчера человеку, возжелавшему поделиться чем-то с миром, достаточно было взять в руки перо, то сегодня он стоит перед необходимостью осваивать персональный компьютер. Мы давно уже усвоили поверхность многих вещей и теперь устремляемся вглубь. Поэтому по-прежнему обыденное сознание человека остается совершенно недостаточным для того поиска, который требует максимальной мобилизации возможностей нашего разума.

Но, к сожалению, ни диалектика, ни формальная логика сами по себе тоже не дают ключ к решению того, что сегодня занимает нас. Обе они отнюдь не всемогущи, и на каждой ступени развития человеческого сознания они способны проникать лишь до известного предела, за которым начинается мрак. Но, как обнаруживается, и под теми – все более и более глубокими слоями сознания, до которых проникает их организующее и дисциплинирующее начало, протекают сложнейшие процессы обработки информации. Поэтому в целом интеллектуальная работа, если использовать избитый образ, формирует собой что-то вроде айсберга. Меж тем у айсберга только выдающаяся над поверхностью океана вершина способна сверкать на солнце, подводная же часть бесформенна, и даже цвет ее далек от ослепительной парадной белизны. Точно так же и здесь не всегда доступные даже самому внимательному самоанализу подсознательные процессы, в действительности формирующие собой основной массив всех интеллектуальных затрат, не имеют четких и правильных контуров. Но (и здесь мы можем сформулировать наш третий вывод) именно методология этой работы является основным залогом многих научных истин.Только умение организовать и направить именно этот в какой-то степени подсознательный интеллектуальный поток является критерием подлинного мастерства.

Простой «кухонный» пример, как кажется, может помочь уяснению того тезиса, который отстаивается здесь. Нальем в большую кастрюлю воды и начнем перемешивать ее, захватывая лишь самую поверхность. Если мы не будем нарушать ритм и направление движения, то в скором времени обнаружим, что во вращение вовлекаются все более и более глубокие слои. Вот так и в деятельности нашего разума ничем не нарушаемая, строгая дисциплина мысли способна вовлекать в направляемый нами поток и те глубинные процессы, до которых еще не проникла организующая роль ни формальной логики, ни диалектики. Без такой дисциплины, без «автоматизированных» навыков организации мышления никакое увеличение объема прочитанных книг или собранных фактов никогда никого не выведет за рамки простого научного ремесленничества, другими словами, за рамки обыкновенной посредственности. Поэтому подлинная культура и дисциплина сознания в конечном счете проявляется именно в этой способности упорядочивать и направлять течение глубинных процессов мета-логической обработки всех наших представлений. Кстати, благодаря именно такому вовлечению в общий поток организации многое из того, что лежит ниже подконтрольного диалектике уровня, постепенно переходит в ее состав, обогащая и арсенал самого исследователя, и общечеловеческую мысль. Иначе говоря, многое из этих подповерхностных процессов со временем входит в состав диалектики.

Как правило, все то, что протекает в неограненном строгими формами потоке предвычислений, иными словами, в ходе предварительной обработки каких-то интуитивных общих представлений о мире, обнаруживается нами лишь там, где уровень сложности скрытых от обыденного сознания процессов переходит некий критический рубеж. Но, как уже говорилось, далеко не всегда мы оказываемся на должной духовной высоте и осознаем эту сложность как интеллектуальную задачу, которая требует своего разрешения. Гораздо чаще мы списываем обнаруживаемое затруднение на глупость поставленного вопроса, а то и вообще на глупость того, кто его задает.

Между тем задача о том, «сколько будет?», если сложить красное и бессовестное, столь же правомерен, сколь и вопрос о сложении парно – и непарнокопытных. Ведь вполне справедливо предположить, что количественному сравнению могут и должны подлежать не только те вещи, качественные отличия между которыми сравнительно невелики, но и те, между которыми пролегает целая пропасть.

Стоит задуматься о том, что такие парадоксальные вопросы имеют полное право не только на существование, но и на получение четкого и однозначно интерпретируемого ответа. Стоит уже хотя бы для того, чтобы обнаружить, что все те количественные шкалы, которыми мы постоянно пользуемся в повседневном обиходе, решительно неприменимы там, где качественные отличия между всеми подлежащими сопоставлению вещами, явлениями, процессами оказываются слишком большими.

О чем говорит отсутствие этих шкал? О том, что количественные операции вообще не могут выполняться там, где качественные отличия переходят какой-то критический рубеж?

Здесь есть некая тонкость, которая требует своего осознания. Или мы соглашаемся с тем, что операции количественного сопоставления могут совершаться над любыми вещами вообще, или признаем, что они правомерны только для сравнительно небольшой части общего круга объектов, процессов, явлений, которые в своей сумме и составляют всю окружающую нас действительность. Последнее обстоятельство означает, что сфера количественного анализа должна быть ограничена, что за пределами этого круга не вправе применяться решительно никакие количественные определения.

Но жизнь показывает, что область применимости количественного анализа постоянно и неуклонно расширяется. Вспомним. Вплоть до начала XVII века математика – это преимущественно наука о числах, скалярных величинах и сравнительно простых геометрических фигурах; она оперирует лишь постоянными величинами. К этому периоду относится возникновение арифметики, геометрии, позднее – алгебры и тригонометрии и некоторых частных приемов математического анализа. Областью их применения являются счет, торговля, землемерные работы, астрономия, отчасти архитектура. В новое время потребности естествознания и техники (развитие мореплавания, астрономии, баллистики, гидравлики и т. д.) порождают идеи движения и изменения. Эти идеи реализуются в математике прежде всего в форме переменных величин и функциональной зависимости между ними. Появляется аналитическая геометрия, дифференциальное и интегральное исчисление. В XVIII веке возникают и развиваются теория дифференциальных уравнений, дифференциальная геометрия и т. д. В XIX-XX веках математика поднимается на новые ступени абстракции. Обычные величины и числа оказываются лишь частными случаями объектов, изучаемых в современной алгебре; геометрия переходит к исследованию неевклидовых пространств. Развиваются новые дисциплины: теория функций комплексного переменного, теория групп, проективная геометрия, неевклидова геометрия, теория множеств, математическая логика, функциональный анализ и другие. Практическое освоение результатов теоретического математического исследования требует получения ответа на поставленную задачу в числовой форме. В связи с этим в XIX-XX веках численные методы математики вырастают в самостоятельную ее ветвь – вычислительную математику. Стремление упростить и ускорить решение ряда трудоемких вычислительных задач приводит к созданию вычислительных машин. Потребности развития самой математики, «математизация» различных областей науки, проникновение математических методов во многие сферы практической деятельности, быстрый прогресс вычислительной техники влекут за собой появление целого ряда новых математических дисциплин, как, например, теория игр, теория информации, теория графов, дискретная математика, теория оптимального управления.

Думается, можно быть вполне уверенным в том, что и в будущем экспансия математических методов продолжится, поэтому вполне разумно предположить, что, наверное, не существует вообще никаких пределов для количественного анализа. Но если это и в самом деле так, то абсолютно правомерно ставить вопрос о количественном соотношении между собой любых начал, любых объектов, процессов, явлений. Словом, об измерении, сравнении и т.п. всего того, о чем вообще только можно помыслить. В логическом пределе допустимо складывать друг с другом самые «экзотические» вещи. Допустимо утверждать, что своя количественная шкала должна найтись для любого класса явлений. Поэтому то, что сегодня мы можем выполнить эту операцию далеко не со всеми из них, говорит лишь о том, что совокупность тех общих представлений о мире, которые лежат в основании любого счета, далеко не завершена.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.