Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником Страница 5
- Категория: Научные и научно-популярные книги / Радиотехника
- Автор: Генрих Кардашев
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 62
- Добавлено: 2019-02-05 12:29:36
Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником» бесплатно полную версию:Книга является практическим введением в изучение начал радиоэлектроники с помощью компьютера и самостоятельного технического творчества. В популярной форме рассказывается о радиоэлектронике, поясняется смысл используемых понятий и явлений, приводятся занимательные эпизоды из истории изобретений и открытий. Основу практической части составляют описания простейших и в тоже время интересных и полезных самоделок из электронных наборов Мастер КИТ. Даются подробные советы по их сборке, наладке и применению в быту. Параллельно принципы действия рассматриваемых устройств раскрываются путем моделирования их схем на компьютере в простой программе игрового типа — Electronics Workbench.Для широкого круга читателей, которые хотели бы подружиться с радиоэлектроникой, сев за компьютер и взяв в руки паяльник.
Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником читать онлайн бесплатно
а — внешний вид; б — УГО на принципиальных схемах при разной мощности; в — компонент EWB
При выборе резисторов в ответственных случаях учитывается до 15 различных параметров. Все зависит от конкретных целей.
Номинальное значение сопротивления резистора указывается производителем на корпусе изделия. Там же указывают и ряд других его характеристик. Для маркировки резисторов используют специальные кодировки: буквенно-цифровую, цифровую и цветовую.
При буквенно-цифровой кодировке указывают непосредственно значение сопротивления резистора, иногда ставят букву R, чтобы обозначить омы, или букву К, обозначающую килоомы. Здесь перечисленные буквы, поставленные за числом, являются его десятичными множителями (R = 1, К = 1000), а — перед или между числами, играют роль разделителя целой и дробной части. Например, 15R и 15К означают, что сопротивления этих резисторов равны 15 Ом и 15 кОм = 15 000 Ом соответственно, а для R15 и 1К5, аналогично 0,15 Ом и 1,5 кОм = 1500 Ом. Кроме этого, часто проставляют и допустимую мощность (см. рис. 2, б).
При чисто цифровой маркировке величина сопротивления резистора наносится тремя цифрами, из которых две первые показывают ее мантиссу, а третья служит показателем степени 10 для дополнительного множителя. Например, 150 означает 15 Ом, 151 это 150 Ом, 152 — 1500 Ом и т. д. Соответственно, на резисторе с сопротивлением 15 МОм увидим в этом коде: 156.
К цветовой кодировке прибегли в связи с миниатюризацией изделий. «Хотели как лучше, получилось как всегда». Вот резисторы с двумя видами цветовых колец-поясков: на одних их 4, на других — 5. Всего цветов 12, так что любимой присказки гимназистов про цвета в спектре радуги: «Каждый охотник желает знать, где сидит фазан» (или «Как однажды Жак-звонарь головой разбил фонарь») явно не хватает для запоминания. Эта известная последовательность цветов использована, но перед ней еще цвета: серебристый, золотистый, черный и коричневый, а после нее — серый и белый. Красиво, нет слов, но, поди теперь, ломай голову над этими знаками, напоминающими древние цивилизации (схожая кодировка, но не резисторов, обнаружена у племен майя). Кому охота, пусть лезет в справочник, а проще взять в руки омметр да и измерить. Правда, получим только номинал сопротивления, но этого часто хватает для работы. О многом другом говорит их вид и размер. Ну да ладно, странно только, что в наш интеллектуально-просвещенный век не взяли на вооружение, например, электронные системы обычного штрих-кодирования, применяемые в любом супермаркете, автомобилестроении или на фотокассетах. Как говорится: «Сапожник без сапог».
Помимо постоянных резисторов для регулировок и подстроек используют переменные (рис. 3), в которых имеется подвижный контакт, перемещаемый по дуге окружности или по отрезку прямой.
Рис. 3. Переменные резисторы:
а — внешний вид; б — УГО; в — компонент EWB
Могут встретиться три случая зависимости величины сопротивления от угла поворота: линейная (А), логарифмическая (Б) и антилогарифмическая (В). Указанные буквы входят в маркировку отечественных переменных резисторов наряду с другими параметрами.
При конкретном применении резисторов необходимо обратить внимание на то, что номинальное значение сопротивлений указывается с допуском, выраженным в % от номинала. Для особо точных (прецизионных) резисторов допуск составляет ±0,001, а наиболее грубых ±30.
Кроме того, следует помнить, что для резисторов, выполненных из материалов с электронной проводимостью, их сопротивление будет расти по мере нагрева. Иногда и это надо брать в расчет, поэтому производители указывают соответствующий тепловой коэффициент сопротивления изделий.
Электрофизические характеристики полупроводниковых материалов зависят от внешних условий, сильно изменяющих в основном концентрацию носителей тока (электронов и дырок). Этим и воспользовались, создав специальные полупроводниковые резисторы.
Терморезисторы, называемые также термисторами, значительно уменьшают (в отличие от проводников) свое сопротивление с ростом температуры.
Варисторы также уменьшают свое сопротивление, но под действием приложенного напряжения.
Тензорезисторы изменяются в зависимости от механической деформации.
Магниторезисторы изменяют свое сопротивление под действием магнитного поля.
Это, конечно, все же «редкие птицы» среди большого семейства резисторов, но в нужном случае они могут быть очень полезны: «Хороша ложка к обеду», а здесь для каждого возможного блюда, случая припасена специальная «ложка» или «ложечка».
КонденсаторыСлово «конденсатор» происходит от латинского condensare, означающего сгущать, уплотнять. История изобретения конденсаторов весьма поучительна и позволяет глубже понять физическую сущность, а, следовательно, и применимость на практике этого компонента электронных устройств.
Из родословной конденсатора
Не вдаваясь особо в туманную, как всегда, историю изобретения конденсаторов, укажем лишь, что рождение произошло в середине XVIII в.
Соборный декан в Померании фон Клейст, держа в одной руке медицинскую склянку с небольшим количеством ртути или винного спирта, вставил в нее гвоздь и наэлектризовывал его свободный конец. Прикосновение к гвоздю вызывало искры и сильные электрические удары. Это устройство назвали бутылкой Клейста.
Голландский физик Мушенбрек из г. Лейден провел аналогичные опыты со стеклянной банкой, заполненной водой и опять-таки гвоздем, один из концов которого был погружен в нее. Удар, полученный им в одном из опытов, он не соглашался повторить даже «ради короны Франции». Это устройство назвали лейденской банкой.
Аббат Нолле, ставший «придворным электриком», в обязанности которого входила организация увеселений двора Людовика XV с помощью электричества, в присутствии короля повторил опыт Мушенброка, но не на себе. Он образовал цепь из 180 гвардейцев, взявшихся за руки, причем первый держал заряженную банку в руке, а последний, замыкая цепь солдат, касался торчащей из нее проволоки, извлекая искру. Реакция бравых гвардейцев была весьма сильной. От этой цепи солдат произошел термин «электрическая цепь». Хорошо, что энергии, накопленной в банке, было не достаточно для печальных последствий. Однако ее хватало, чтобы убить воробья, что впервые и осуществил этот «аббат». Поэтому его смело можно назвать первым в ряду изобретателей «электрического стула» и электрошоковых устройств.
Не трудно видеть, что первые изобретатели исходили из понятий «электрической жидкости», которую привычно разливали по разным сосудам…
Более детальные и продуктивные опыты провел Франклин, исследовавший роль диэлектрика (стекло), разделяющего обкладки: рука-гвоздь в лейденской банке. Вылив воду из заряженного конденсатора, он залил его новой водой и обнаружил, что он опять заряжен. Отсюда он сделал вывод о том, что заряды противоположных знаков «сидят» на двух поверхностях стекла. Ошибка Франклина была обнаружена только в 1922 г. Адденбруком. В специальном разборном конденсаторе он заменил стекло парафином и показал роль адсорбированной пленки воды в опыте Франклина.
Эта ошибка нисколько не умаляет многих других заслуг этого ученого и политического деятеля, и его следы мы видим не только на стодолларовой купюре: знаки «+» и «-» для разноименных электрических зарядов ввел именно Франклин. Однако и он не избежал проведения опытов над животными: «Самым крупным существом, которое нам удалось умертвить электрическим ударом, был довольно крупный цыпленок», — пишет Франклин в своих сочинениях.
Возвращаясь на научную стезю, особо следует отметить работы Фарадея по исследованиям различных диэлектриков, используемых в конденсаторах. Вообще Фарадей сделал много разных замечательных открытий, но вошел в парад знаменитых ученых, именами которых были названы единицы измерения, благодаря исследованиям диэлектриков. Да и сам этот термин ввел в физику Фарадей. Он смастерил специальный сферический конденсатор — два металлических шара — один внутри другого. Это — обкладки, а пространство между ними заполнял различными веществами и проводил измерения электрической емкости конденсатора. Не случайно поэтому, единице электрической емкости дано наименование «фарад».
Плоский конденсатор мы обнаруживаем в электрометре Вольта: его верхний ввод был выполнен из двух горизонтальных пластин, изолированных друг от друга лаком.
Блочно-пакетная конструкция конденсаторов в виде стопки чередующихся полосок металлической фольги, разделенных изоляционными слоями, была предложена русским электротехником П. Н. Яблочковым во второй половине XIX в. Им же были предвосхищены так называемые «электролитические конденсаторы».
Жалоба
Напишите нам, и мы в срочном порядке примем меры.