Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е] Страница 9

Тут можно читать бесплатно Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]. Жанр: Научные и научно-популярные книги / Радиотехника, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]

Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е] краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]» бесплатно полную версию:
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах.Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е] читать онлайн бесплатно

Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е] - читать книгу онлайн бесплатно, автор Пауль Хоровиц

Рис. 7.20. На очень низких частотах стабилизированные прерыванием ОУ имеют шумы меньше, чем обычные малошумящие ОУ. Шумы измерены в полосе частот от 0 до указанного значения.

(Maxim Integrated Products, Inc)

Последняя проблема, связанная с усилителями с автоподстройкой нуля, — их катастрофические характеристики по насыщению. Происходит следующее. Автоматически настраивающая нуль схема при попытке привести разностное напряжение на входе к нулю действует так, как если бы в полной мере работала обратная связь. Если выход усилителя насыщен (или если отсутствует внешняя цепь, обеспечивающая обратную связь), то на входе будет большое дифференциальное напряжение, которое нуль-усилитель воспримет как входную погрешность сдвига; при этом он слепо выдаст большое корректирующее напряжение, которое будет подзаряжать корректирующие конденсаторы до тех пор, пока нуль-усилитель сам не войдет в насыщение. Восстановление длится невероятно долго — до секунды!

«Лекарство» такое: чувствовать, когда выход подходит к насыщению и фиксировать вход, чтобы предотвратить насыщение. Большинство ОУ с автоподстройкой нуля с этой целью снабжены «фиксатором» выхода, который для предотвращения насыщения подключается назад к инвертирующему входу. Не допустить насыщения в усилителе с прерыванием, не имеющем «фиксирующего» вывода (а также и в обычном ОУ), можно, подключив параллельную цепь обратной связи из двунаправленного стабилитрона (два встречно-последовательно соединенных стабилитрона), которая фиксирует выход на уровне напряжения пробоя стабилитрона, не позволяя ему достигать напряжения питания; лучше всего такой проем работает в инвертирующей схеме.

Кое-что еще о схемах с прерыванием

Усилитель со связью по переменному току. Рассматривая описанные выше усилители с автоподстройкой нуля с помощью прерывателя, не спутайте этот способ с другим методом «прерывания», а именно: с традиционным узкополосным усилителем с прерывателем, в котором малый сигнал постоянного тока преобразуется («прерывается» с известной частотой) в сигнал переменного тока, усиливается усилителями переменного тока и, наконец, демодулируется путем наложения на него сигнала той же формы, что использовалась первоначально для прерывания исходного сигнала (рис. 7.21). Данная схема совершенно отлична от только что рассмотренного нами метода автоподстройки нуля с полной полосой пропускания, что особенно проявляется в ее раскачке при подходе частоты сигнала к частоте тактового генератора, составляющей обычно всего несколько сотен герц. Иногда это можно наблюдать с помощью самописца или другого низкочастотного измерительного прибора.

Рис. 7.21. Усилитель с прерывателем и связью по переменному току.

Температурные сдвиги. При построении усилителей постоянного тока с субмикровольтными напряжениями сдвига необходимо полностью отдавать себе отчет в возможности появления температурных сдвигов, которые создают небольшие термоэлементы, образуемые соединением разнородных металлов (см. разд. 15.01). В случае если пара таких соединений имеет разную температуру, мы получаем эффект Зеебека («термо-э. д. с.»). На практике обычно имеются точки соединения проводников с различным покрытием; температурный градиент или даже небольшой поток воздуха легко может вызвать появление напряжения в несколько микровольт. Даже однотипные провода разных изготовителей могут давать термо-э. д. с. величиной 0,2 мкВ/°С, в четыре раза больше, чем паспортное значение дрейфа МАХ432! Наилучший способ исключить влияние тепловых потоков и градиентов — в симметричном, насколько это возможно, расположении проводников и компонентов на печатной плате.

Внешняя настройка нуля. Фирма National выпускает превосходный чип «автоподстройки нуля» (LMC669), который можно использовать как внешний нуль-усилитель, превращающий любой выбранный нами ОУ в усилитель с автоподстройкой нуля (рис. 7.22).

Рис. 7.22. ИМС LM669 для внешней автоподстройки нуля.

Наиболее естественным является включение этого кристалла в инвертирующую схему, при котором он, как показано, задает на неинвертирующем входе такое напряжение, которое приводит входной сдвиг к нулю. Работает эта схема не столь хорошо, как рассмотренные ранее специально предназначенные для этих целей усилители с автоподстройкой нуля: Uсдв составляет 5 мкВ (тип.) или 25 мкВ (макс). Однако она позволяет нам использовать метод автоподстройки нуля с любым ОУ. Можно, например, применить его для установки нуля непрецизионного, но мощного или высокоскоростного ОУ. Представленные на схемах типы ИМС-хорошие примеры. LM675 — превосходный мощный ОУ (выходной ток 3 А, сложная встроенная в кристалл схема токовой и тепловой защиты), имеющий, однако, напряжение сдвига до 10 мВ (макс). Автоподстройка нуля уменьшает его примерно в 1000 раз. В свою очередь, LM6364-быстродействующий усилитель (fср = 175 МГц, скорость нарастания составляет 350 В/мкс) с напряжением сдвига 9 мВ (макс), которое уменьшается здесь раз в 400. Обратите внимание на фильтрующие RС-цепочки как на входе, так и на выходе схемы автоподстройки нуля: они необходимы, чтобы подавить шумы прерывателя в этой (медленной) корректирующей петле, когда данный метод используется для усиления малых сигналов и с такими малошумящими устройствами, каковым является LM6364 (8 нВ/√Гц).

Измерительный усилитель. Еще один метод «прерывания», так называемый «коммутируемый с автоподстройкой нуля» (или КАН) усилитель, первоначально был применен фирмой Intersil. В этом методе, который был воплощен в ИМС ICL7605 измерительного усилителя с «плавающим конденсатором», МОП-транзисторные ключи дают возможность запомнить дифференциальный входной сигнал на конденсаторе, а затем усилить его с помощью неинвертирующего усилителя, стабилизированного прерыванием (рис 7.23).

Рис. 7.23. Дифференциальный усилитель ICL7605 с «плавающим конденсатором» и высоким КОСС.

Как и у стандартного усилителя с автоподстройкой нуля, здесь также имеются обусловленные зарядовой связью выбросы с тактовой частотой, которые налагают на КАН-метод те же ограничения, которые мы видели ранее. Хотя в первом издании мы с энтузиазмом говорили о КАН-усилителях, что «… представляется хороший случай коренным образом улучшить точность ОУ и технологию измерительных усилителей», однако их превзошли улучшенные схемы автоподстройки нуля, в которых сигнал всегда проходит через один усилитель. Тем не менее, отдавая должное КАН-усилителю, необходимо отметить, что примененный в ИМС 7605 метод «плавающего конденсатора» имеет ряд уникальных достоинств, в том числе диапазон синфазного входного напряжения, на 0,3 В превышающий оба напряжения питания, минимальное значение КОСС 100 дБ даже при единичном усилении, а также самое малое среди всех монолитных усилителей напряжение сдвига. При использовании этих усилителей, однако, нельзя забывать, что необходима фильтрация шума на выходе, напряжение питания ограничено величиной ± 8 В, а полное сопротивление нагрузки должно быть высоким, поскольку полное выходное сопротивление периодически (с тактовой частотой) возрастает.

Готовый блок «плавающего конденсатора» LTC1043 позволяет вам самим изготовить дифференциальный усилитель с высоким КОСС. Измерительные усилители подробно рассматриваются в следующем разделе. Большинство выпускаемых в настоящее время ОУ с автоподстройкой нуля включены в таблицу прецизионных операционных усилителей (табл. 7.2).

Дифференциальные и измерительные усилители

Термином «измерительный усилитель» обозначают дифференциальный усилитель со связями по постоянному току, высоким коэффициентом усиления, высоким входным полным сопротивлением и большим КОСС. Такие усилители используются для усиления малых дифференциальных сигналов, приходящих от датчиков, к которым могут быть примешаны большие синфазные сигналы или постоянные уровни.

Примером таких датчиков является тензодатчик — резисторный мост, у которого, деформация (удлинение материала, к которому он прикреплен) вызывает изменение сопротивления (см. разд. 15.03). В результате изменяется выходное дифференциальное напряжение моста, возбуждаемого фиксированным постоянным смещением +10 В (рис. 7.24).

Рис. 7.24. Мост из тензодатчиков, подключенный к усилителю.

У всех резисторов примерно одно и то же сопротивление (типичное значение 350 Ом), но они подвергаются различной деформации. Чувствительность по всей шкале обычно равна 2 мВ на 1 В, поэтому диапазон изменения выходного сигнала будет равен 20 мВ при постоянном возбуждении 10 В. Это небольшое дифференциальное выходное напряжение пропорционально деформации и наложено на постоянный уровень 5 В. Дифференциальный усилитель должен обладать исключительно большим КОСС для усиления милливольтового дифференциального сигнала при одновременном подавлении синфазной помехи ~ 5 В. Предположим, например, что мы хотим иметь максимальную ошибку 0,1 %. Так как 0,1 % от полной шкалы есть 0,02 мВ, наложенные на 5000 мВ, КОСС должен превосходить 250000:1, т. е. ~ 108 дБ.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.