Скрытые связи - Фритьоф Капра Страница 4

Тут можно читать бесплатно Скрытые связи - Фритьоф Капра. Жанр: Научные и научно-популярные книги / Науки: разное. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Скрытые связи - Фритьоф Капра

Скрытые связи - Фритьоф Капра краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Скрытые связи - Фритьоф Капра» бесплатно полную версию:

Автор ставших бестселлерами книг «Дао физики» и «Паутина жизни» исследует глубокие социальные последствия новейших принципов науки и предлагает новаторский подход, позволяющий применить их для решения ряда наиболее насущных задач нашего времени.

Скрытые связи - Фритьоф Капра читать онлайн бесплатно

Скрытые связи - Фритьоф Капра - читать книгу онлайн бесплатно, автор Фритьоф Капра

от производимой животными углекислоты, равно как и от азота, связываемого почвенными бактериями. Взятые же вместе, растения, животные и микроорганизмы регулируют биосферу в целом и поддерживают условия, благоприятные для жизни. Согласно выдвинутой Джеймсом Лавлоком и Линн Маргулис8 теории Геи, эволюция первых живых организмов шла рука об руку с превращением поверхности планеты из неорганической среды в саморегулирующуюся биосферу[11]. «В этом смысле, – пишет Гарольд Моровиц, – жизнь есть свойство скорее планет, нежели отдельных организмов».9

Определение жизни в терминах ДНК

Давайте теперь вернемся к вопросу «Что есть жизнь?» и спросим: как работает бактериальная клетка? Каковы ее определяющие характеристики? Взглянув на клетку в электронный микроскоп, мы заметим, что в ее метаболических процессах принимают участие особые макромолекулы – громадные образования, представляющие собой длинные цепи из сотен атомов. Во всех клетках обнаруживаются два рода таких макромолекул – белки и нуклеиновые кислоты (ДНК и РНК[12]).

В бактериальной клетке имеется два основных типа белков – ферменты, действующие как катализаторы различных метаболических процессов, и структурные белки, являющиеся ее строительным материалом. В клетках высших организмов имеется также множество других типов белков, выполняющих специальные функции, – например, антитела иммунной системы и гормоны.

Поскольку большинство метаболических процессов катализируются ферментами, а выработка ферментов определяется генами, клеточные процессы являются генетически управляемыми, что придает им чрезвычайную устойчивость. Молекулы РНК служат «посыльными», перенося от ДНК необходимую для синтеза ферментов информацию и устанавливая тем самым ключевую связь между генетическими и метаболическими характеристиками клетки.

ДНК также ответственна за самовоспроизводство клетки, представляющее собой важнейшее свойство живого организма. Не будь этого свойства, любые случайно возникшие структуры, погибнув, исчезли бы с лица земли и жизнь не смогла бы развиться. Эта ключевая роль ДНК наводит на мысль, что ее следовало бы считать единственной определяющей характеристикой живого. Нельзя ли просто сказать: «Живые системы – это химические системы, которые содержат ДНК»?

Дело, однако, в том, что ДНК содержится и в мертвых клетках. Ее молекулы способны сохраняться сотни и даже тысячи лет после смерти организма. Впечатляющим примером здесь может послужить сделанное несколько лет назад сообщение немецких ученых, которым удалось определить точную последовательность генов в ДНК, извлеченной из черепа неандертальца – костей, которые мертвы уже более 100 тысяч лет!10 Таким образом, самого по себе наличия ДНК для определения жизни недостаточно. Нам также не обойтись без описания метаболических процессов клетки – иначе говоря, способов взаимодействия макромолекул. По словам специализирующегося на молекулярной эволюции и происхождении жизни биохимика Пьера Луиджи Луизи, эти два подхода – «аминокислотный» и «клеточный» – представляют собой два основных философских и экспериментальных направления в современной науке о живом.11

Мембраны – основа клеточной индивидуальности

Давайте теперь взглянем на клетку как на некую целостную систему. Прежде всего, клетка характеризуется наличием границы (клеточной мембраны), отделяющей собственно систему от окружающей ее среды. В области, очерченной этой границей, происходят сложные химические реакции (клеточный метаболизм), при помощи которых система обеспечивает собственную жизнедеятельность.

Большинство клеток кроме мембран имеют также и жесткую клеточную стенку, или оболочку. Это характерно для многих разновидностей клеток, но только мембраны могут считаться универсальной отличительной чертой клеточной жизни. С самого своего зарождения жизнь на Земле была связана с водой. Бактерии движутся в воде, и метаболизм внутри их мембранных оболочек также происходит в водной среде. В таких условиях клетка не может сохраняться как отдельная сущность без физического барьера, препятствующего свободной диффузии. Существование мембран, таким образом, – необходимое условие жизни клетки. Они не только универсальная черта живого; они также проявляют неизменность организационной модели во всем живом мире.

Ниже мы увидим, что особенности ее молекулярного строения содержат важные сведения о происхождении жизни.12

Мембрана и клеточная стенка – далеко не одно и то же. В то время как последняя представляет собой жесткую структуру, мембрана всегда активна, постоянно открывается и закрывается, впуская одни вещества внутрь и выпуская другие наружу. В метаболических реакциях клетки участвует множество различных ионов[13], и мембрана, будучи полупроницаемой, контролирует и поддерживает должное их соотношение. Другая важнейшая роль мембраны состоит в постоянном откачивании избыточного кальция и поддержании таким образом необходимой для клеточного метаболизма строго определенной и очень низкой концентрации этого элемента. Вся эта деятельность направлена на то, чтобы сохранить клетку как отдельную сущность и защитить ее от вредных воздействий извне. Собственно говоря, первое, что делает бактерия, подвергшись атаке со стороны другого организма, – это выстраивает мембраны.13

Все ядерные клетки, и даже большинство бактерий, обладают также внутренними мембранами. В учебниках растительную или животную клетку обычно изображают в виде большого диска, окруженного клеточной мембраной, внутри которого присутствуют диски меньшего размера (органеллы), каждый из которых в свою очередь окружен мембраной.14 В действительности эта картина не совсем точна. В клетке нет отдельных мембран; в ней имеется единая взаимосвязанная мембранная структура. Эта так называемая «эндомембранная система» все время находится в движении, обволакивая собой все органеллы и располагаясь вдоль клеточной стенки. Это движущаяся «конвейерная лента», которая постоянно формируется, разрушается и формируется вновь.15

Посредством своей многообразной деятельности мембрана регулирует молекулярный состав клетки и тем самым поддерживает ее индивидуальность. Здесь можно провести интересную параллель с современными иммунологическими представлениями. Некоторые иммунологи считают, что ключевая роль иммунной системы состоит в регулировании молекулярного состава организма как целого для поддержания его «молекулярного своеобразия».16 На клеточном уровне ту же роль играет мембрана. Регулируя молекулярный состав клетки, она сохраняет ее своеобразие.

Самовоспроизводство

Мембрана – одна из определяющих черт клеточной жизни. Другой такой чертой является характер происходящего в клеточном объеме метаболизма. По словам микробиолога Линн Маргулис: «Метаболизм, этот непрерывный химический процесс самосохранения, есть неотъемлемая черта живого… Посредством непрекращающегося метаболизма, посредством химических и энергетических потоков жизнь непрерывно производит, ремонтирует и продолжает самое себя. Только клетки и состоящие из них организмы метаболируют».17

Взглянув на метаболические процессы более пристально, мы обнаружим, что они представляют собой химические цепи или сети. Это еще одна фундаментальная особенность живого. Подобно тому как экосистемы анализируются с помощью пищевых цепей (сетей организмов), отдельные организмы рассматриваются как сети клеток, органов и систем органов, а клетки в свою очередь – как сети молекул. Одним из ключевых достижений системного подхода явилось понимание того, что сеть – это модель организации, присущая всему живому. Везде, где мы обнаруживаем жизнь, мы видим сети.

Метаболической сети клеток свойственна совершенно особая динамика, кардинально отличающая ее от внешней неживой среды. Получая продукты

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.