В. Жуков - Физика в бою Страница 12
- Категория: Научные и научно-популярные книги / Техническая литература
- Автор: В. Жуков
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 34
- Добавлено: 2019-02-02 17:33:52
В. Жуков - Физика в бою краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «В. Жуков - Физика в бою» бесплатно полную версию:В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.
В. Жуков - Физика в бою читать онлайн бесплатно
А вот пример из арсенала сторонников первой точки зрения. Экспериментальный гиперзвуковой пилотируемый самолет Х-15А-2 имеет неподвижное прямое крыло. В том, что крыло сделано прямым, видно стремление конструкторов в какой-то мере облегчить посадку. Но крыло тонкое и имеет малое удлинение, а это уже дань большой сверхзвуковой скорости, так как этот самолет рассчитан на максимальную скорость 8800 км/час на высоте 30,5 км. Х-15А-2 снабжен ракетным двигателем и не может взлетать с земли. Он доставляется на определенную высоту самолетом-носителем. Однако садится машина по-самолетному, но с громадной посадочной скоростью (340 км/час, а по некоторым данным, и выше), требующей от пилота поистине циркового искусства в точности приземления.
Таковы вкратце некоторые проблемы, с которыми сталкивались и сталкиваются специалисты при конструировании новых самолетов больших сверхзвуковых скоростей. Однако как будут выглядеть будущие гиперзвуковые самолеты, сказать сейчас трудно. Этот вопрос находится еще, как мы видим, в стадии предварительных исследований и разработок. Большой отпечаток на внешнюю форму гиперзвукового самолета может наложить сложная проблема защиты конструкций от аэродинамического нагрева.
СЕКРЕТЫ СКОРОСТИ
Инженер-капитан 1 ранга В. ГЕРАСИМОВ, кандидат технических наукМеханика составляет древнейшую часть физики. Основы механики твердых тел и гидростатика разрабатывались еще Архимедом. Динамика жидких и газообразных тел куда моложе. Она зародилась как наука лишь в XVIII веке и действительно больших успехов добилась только в нашем столетии. Зато теперь ни один проект корабля, самолета, ракеты не может быть создан без учета законов гидро- или аэродинамики.
Этим-то ветвям могучего древа физики мы в значительной степени и обязаны тем, что живем в век больших скоростей. Взять, к примеру, авиацию. Она уже давно перешагнула звуковой барьер. А космические аппараты и ракеты преодолевают за один час десятки тысяч километров.
В кораблестроении пока еще результаты намного скромнее. Да это и понятно: ведь вода в 800 раз плотнее воздуха. Значит, во столько же раз больше и сила сопротивления, которая воздействует на движущееся в ней тело. Но и на воде можно получить высокие результаты, если подчинить всю конструкцию судна идее достижения рекордной скорости. За рубежом, например, был создан катер, который за час проходит более 440 км. Однако плавать он способен лишь в штилевую погоду, а его полезная нагрузка практически равна нулю.
Именно эти особенности таких судов и делают их непригодными для всех иных целей, кроме спортивных и исследовательских. Ведь грузоподъемность, например, имеет огромное военное значение. И здесь корабли, вообще говоря, находятся вне конкуренции. Так, если для ракет полезная нагрузка исчисляется несколькими тоннами, а для самолетов десятками тонн, грузоподъемность современных транспортных судов достигает многих десятков тысяч тонн.
Быстроходность, грузоподъемность и мореходность корабля неразрывно связаны друг с другом. Не удивительно, что получить желаемые тактико-технические данные конструкторы могут только в результате компромиссных решений. И не случайно, что современные эскадренные миноносцы капиталистических флотов имеют скорость 65–70 км/час, т. е. на 10–12 км/час меньшую, чем лучшие итальянские эсминцы 30-х годов. Эта уступка была сделана для того, чтобы улучшить мореходность, взрывостойкость, повысить прочность новых кораблей, оснастить их радиоэлектронной техникой, ракетным оружием.
Понятно, что это — временная уступка. Инженеры и ученые усиленно работают сейчас над тем, чтобы не только вернуть надводным кораблям потерянную скорость, но и повысить ее.
А вот скорости хода подводных лодок зарубежных стран за последние 20 лет уже возросли в два-три раза и достигают 50–55 км/час. Отдельные же опытные лодки способны развивать скорости свыше 60 км/час. Это значит, что современные корабли морских глубин по своим скоростным качествам вплотную приблизились к эскадренным миноносцам и фрегатам, составляющим ядро надводных сил противолодочной обороны.
Высокая скорость подводного хода составляет одно из ценнейших качеств подводной лодки. Она повышает вероятность перехвата целей, сокращает время, затрачиваемое на переход в район позиций, открывает возможности активных боевых действий, облегчает отрыв от кораблей противолодочной обороны. Но очевидно, не в меньшей степени значительная скорость хода нужна и надводным кораблям — основным соперникам и противникам подводных лодок.
Как же ученые и инженеры борются за скорость кораблей?
Существуют два главных направления улучшения скоростных качеств всякого корабля. Первое из них — повышение мощности его главных механизмов, второе — совершенствование гидродинамики корабля и прежде всего снижение его сопротивления.
Учитывая реальные возможности этих направлений, американские специалисты считают вероятным, принципиально возможным повышение скоростей хода атомных подводных лодок как максимум до 50 узлов (90 км/час). Полагают, что лодки со столь высокими скоростными качествами будут более всего походить на торпеды. На них уже не останется таких выступающих частей, как ограждение рубки или выходящие за обводы корпуса обтекатели гидроакустических станций, а их наружная обшивка приблизится по гладкости к полированной поверхности. Но даже при этих условиях будет необходимо еще и значительное повышение мощности энергетической установки.
Конечно, 90 км/час — это огромная скорость для водной среды. Но в иностранной печати можно встретить заявления, что в дальнейшем и она не будет считаться достаточной. Например, американский специалист-подводник Ч. Момсен считает, что лодки будущего должны обладать скоростью подводного хода 110 км/час и более. А в выступлениях других специалистов встречаются и такие цифры, как 130–165 и даже 185 км/час (100 узлов).
Какими же путями можно обеспечить подводным лодкам столь высокие скоростные качества? Ведь одним повышением мощности механизмов здесь не обойтись. Это подтверждается расчетами американских инженеров, которые показывают, что, например, для-достижения скорости в 110 км/час удельный вес ядерных энергетических установок должен быть не более 4 кг/л.с. Но в настоящее время по этим расчетам он выше в 12–15 раз, и лишь в перспективе ожидается его снижение вдвое-втрое. Следовательно, для выхода за рубеж 90 км/час нужно изыскивать принципиально новые способы снижения сопротивления.
Еще труднее решается проблема больших скоростей для надводных кораблей и судов. В отличие от глубоко погруженных подводных лодок, сопротивление движению которых обусловлено в основном силами трения воды о их обшивку, у надводных кораблей есть еще и так называемое волновое сопротивление. Дело в том, что с повышением скорости резко возрастает интенсивность вызванного движущимся кораблем волнообразования. Образовавшаяся система волн неотступно следует за кораблем, приводя к такому распределению сил давления воды по корпусу, которое сильно увеличивает его сопротивление. Вот почему даже возрастание мощности машин вдвое-втрое могло бы дать лишь 10—20-процентное приращение скорости корабля.
Таким образом, кораблестроители оказываются вынужденными искать «обходные маневры» и призывать в союзники не только гидродинамику, но и физику в широком смысле слова, чтобы «обмануть» природу и создать еще более быстроходные корабли.
Известно, что некоторые инженерно-физические задачи нередко лучше всего решаются в живой природе. Вот почему в поисках путей преодоления «барьера трения», стоящего на пути повышения скоростей подводных лодок, зарубежные гидродинамики принялись разгадывать некоторые «биологические секреты». И это не удивительно. Ведь считается, что отдельные разновидности дельфинов могут развивать скорость до 45 км/час, а меч-рыба — до 90 км/час. Но дело не только в абсолютных величинах скоростей. Ученые уже давно установили, что сопротивление дельфина, рассчитанное обычным для кораблестроения способом, оказывается примерно в 8—10 раз больше того, которое способна преодолевать мышечная система животного.
Это удивительное несовпадение, получившее название «парадокса Грея», объясняется по-разному. Некоторые ученые считают, что кожный покров дельфина благодаря своей гладкости и эластичности, обусловленным свойствами не только самой кожи, но и толстого жирового подслоя, гасит, или, как еще говорят, демпфирует возмущения в потоке воды, которые могли бы срывать ламинарный режим течения вблизи тела дельфина и переводить его в турбулентный. При ламинарном движении жидкости отдельные струйки — слои воды — текут параллельно, обтекая препятствие равномерными слоями (в отличие от турбулентного — вихревого, хаотичного движения). Известно, что при ламинарном, или слоистом, обтекании тела, когда слои жидкости не перемешиваются друг с другом, сопротивление трения пропорционально скорости в степени 1,5. При турбулентном режиме течения жидкость вокруг движущегося тела интенсивно перемешивается (рис. 8 — вверху), и сопротивление пропорционально почти что квадрату скорости. Правда, ламинарное течение неустойчиво, и для его поддержания необходимы особо благоприятные условия. Но ученые считают вполне вероятным, что при обтекании кожи дельфина такие условия как раз существуют.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.