Глеб Анфилов - Что такое полупроводник Страница 16

Тут можно читать бесплатно Глеб Анфилов - Что такое полупроводник. Жанр: Научные и научно-популярные книги / Техническая литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Глеб Анфилов - Что такое полупроводник

Глеб Анфилов - Что такое полупроводник краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Глеб Анфилов - Что такое полупроводник» бесплатно полную версию:
Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов - Что такое полупроводник читать онлайн бесплатно

Глеб Анфилов - Что такое полупроводник - читать книгу онлайн бесплатно, автор Глеб Анфилов

Но вернемся к нашему детектору.

ИЗОБРЕТЕНИЕ ОЛЕГА ЛОСЕВА

В ту пору, когда появились первые детекторы, они были еще очень несовершенны. Подчас больших трудов стоило найти чувствительную точку. Пружинка с нее то и дело соскакивала. Приходилось снова и снова налаживать приемник. Много изобретательности приложили инженеры, чтобы улучшить детектор.

Современные полупроводниковые приборы — наследники первых примитивных детекторов и вакуумных ламп-диодов.

В 1919 году совершенствованием детектора увлекся молодой радиолюбитель Олег Владимирович Лосев. Мечтая посвятить жизнь радиотехнике, он начал с того, что еще совсем юным поступил рассыльным на первую в  {112}  нашей стране Нижегородскую радиолабораторию. Здесь заметили любознательного и талантливого юношу. Сотрудники лаборатории помогли ему пополнить образование, и вскоре Лосев приступил к самостоятельной научной работе. Он тщательно исследовал природные минералы, применяемые в качестве детекторов, изучил их электрические особенности и в 1922 году пришел к неожиданному открытию. Молодой ученый доказал, что если особым способом включить в схему приемника два детектора и электрическую батарейку, то можно усилить электрические колебания, поступающие в наушники.

Для того времени открытие Лосева было очень важным. Ведь обычный детекторный приемник давал возможность слушать лишь близкие станции. Дальний прием, особенно В городах, где много помех и трудно устроить высокую и длинную антенну, оказывался практически невозможным. А приемники Лосева, которые он назвал кристадинами, уверенно принимали передачи сравнительно далеких радиостанций. Изобретатель построил на кристаллах и другие аппараты — генераторы, то есть возбудители электрических колебаний.

Лосев сразу же опубликовал свои открытия, не запатентовав их, не требуя за них никакого денежного вознаграждения. Во многих странах радиолюбители принялись строить приемники по его схемам. Американский журнал писал: «Молодой русский изобретатель передал свое изобретение миру». Французский журнал вторил:  {113}  «Научная слава ожидает Лосева. Он обнародовал свое открытие, думая прежде всего о своих друзьях — радиолюбителях всего мира».

Несколько лет имя изобретателя не сходило со страниц журналов, но потом стало появляться все реже и реже. К концу 20-х годов идея его — использовать кристаллы для усиления и возбуждения электрических колебаний — была забыта. Наука еще не созрела для творческого, созидательного развития этого замысла. Теории полупроводников не существовало, искусственно создавать такие вещества почти не умели. Все надежды радиоинженеров сосредоточились на другом новшестве — радиолампах.

РАДИОЛАМПА РАБОТАЕТ

Радиолюбители старшего поколения хорошо помнят первые годы победного шествия радиоламп. В миллионах радиоприемников, поблескивая стеклом и металлом, гордыми рядами выстроились эти нежные, хрупкие приборы. Какими они казались совершенными по сравнению с примитивными камешками детекторов!

Радиолампам и впрямь было чем гордиться. Ведь с ними мы получили возможность слушать радио без надоевших наушников! Именно тогда в наших домах зазвучали первые громкоговорители.

Что же делает радиолампа?

Вспомните, как сегодня утром вы умывались у водопроводного крана. Если кран хорошо отрегулирован, достаточно было чуть его коснуться, и струя заметно уменьшалась или, наоборот, увеличивалась. Ничтожные усилия руки вызывали резкие перемены потока воды.

Нечто похожее происходит и в радиолампе. Там еле уловимые колебания антенного электрического поля изменяют мощный поток электронов.

{114}

Схема вакуумного триода. Слева — лампа «отперта»; справа — «заперта».

Как это практически осуществляется?

Простейшая радиолампа — стеклянный баллон, освобожденный от воздуха. Заглянув внутрь, мы увидим три изолированных друг от друга металлических электрода: катод, сетку и анод. Катод и анод включены в наружную электрическую цепь с высоким постоянным напряжением. А на сетку подают слабые сигналы антенны.

Тонкая нить катода раскаляется электрическим током. Поэтому из нее вылетают электроны. Подхваченные сильным полем, они немедленно устремляются к аноду. Но на пути электронов — проволочная спираль сетки. Своим небольшим полем она вблизи заметно действует на летящие электроны: либо свободно пропускает их, либо замедляет полет, ослабляя ток, идущий через лампу, либо, наконец, отбрасывает электроны назад к катоду — «запирает» лампу. Все такие перемены электронного потока происходят в такт с изменениями электрического поля сетки. Электронный поток как водяная струя в трубе, а сетка напоминает кран. И как легкие движения крана создают в трубе резкие толчки воды, так и слабые сигналы, уловленные антенной, вызывают в радиолампе заметные импульсы тока.  {115} 

Сигналы можно усиливать многократно в нескольких лампах подряд. Да и не только усиливать. Радиолампы с двумя электродами (без сетки) выпрямляют переменные токи — играют роль детекторов. Радиолампы, снабженные дополнительными электродами, исключительно тонко управляют потоками электронов. Наконец, в этих приборах нетрудно возбуждать разнообразные электрические колебания.

ТРИУМФ И КРИЗИС

В руках ученых и инженеров радиолампа стала мощным средством технического прогресса. Непрерывно совершенствуясь, за несколько лет она завоевала всю радиотехнику. Благодаря ей развилось телевидение, появились радиолокация, радионавигация, при ее участии возникли звуковое кино, магнитная звукозапись и множество других замечательных изобретений. Произошла настоящая техническая революция, которая вызвала к жизни новую обширную область знания — электронику.

Казалось, и будущее радиотехники неразрывно связано с радиолампами. Однако прошли десятилетия, и постепенно выяснилось, что радиолампы не так уж безупречны.

На полярной зимовке радист терял с трудом налаженную связь — «садилась» очередная лампа. Летчик неудачно приземлял самолет — лампы бортовой радиостанции не выдерживали встряски и портились. В подавляющем большинстве случаев любой радиоаппарат выходил из строя из-за недолговечности ламп. Срок их службы, исчисляющийся сотнями и тысячами часов, перестал удовлетворять технику. И мало-помалу они приобрели репутацию самых ненадежных, капризных элементов радиосистемы.

Потом и размеры радиоламп оказались слишком большими. Ведь не одну сотню, даже не одну тысячу их насчитывают иные современные радиоаппараты. Нелегко  {116}  конструктору компоновать это оборудование так, чтобы оно не занимало слишком много места.

Все это заставило радиоинженеров всерьёз подумать о замене радиоламп какими-то другими — компактными и надежными приборами.

Начались поиски новых решений.

ЗАЧЕМ НУЖНА ПУСТОТА?

Любой ламповый радиоприемник, рассуждали ученые, сочетает в себе трудно совместимые конструкционные элементы: твердые тела и... пустоту. Провода, конденсаторы, катушки, сопротивления — все это твердое, все это можно закрепить, сделать прочно, надолго. А радиолампы? Чтобы увеличить стойкость, баллоны ламп выполняют из металла, из специальных пластмасс, керамики. Это, конечно, помогает. Однако главное неудобство — пустота — остается. В ней приходится монтировать сложные электроды, разогревать нить катода. Все там нежное, тонкое, боящееся толчков, тряски.

Казалось бы, пустота незаменима. В ней электронные потоки словно обнажаются, становятся доступными регулировке, попадают во власть слабого электрического поля сетки радиолампы.

Впрочем, только ли в пустоте можно управлять движением электронов?

Что, если попробовать вместо пустоты полупроводниковый кристалл? Надо, очевидно, пропускать через него ток и извне менять электропроводность кристалла. Но каким способом менять ее? Можно ли вообще этого добиться?

От решения этих вопросов зависела судьба всего дальнейшего развития радиотехники.

Так на новой основе возродилась идея О. В. Лосева об усилителях и генераторах на кристаллах.  {117} 

Конечно, многое в ней изменилось. Применять для такой цели обычные детекторы стало нецелесообразно. Эффект они давали небольшой. Речь шла о создании кристаллического прибора, способного уверенно соперничать с современной радиолампой.

Не сразу нащупали путь решения проблемы. Много было досадных неудач, срывов, сомнений. Но в конце концов ответ был найден: да, проводимостью кристалла можно управлять, можно создать полупроводниковый прибор — заменитель радиолампы. Теорию прибора разработал американский физик Вильям Шокли. Его соотечественники Бардин и Браттейн создали в 1948 году первые образцы приборов, названных кристаллическими триодами или транзисторами.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.