Юлия Щербакова - Электроника и электротехника. Шпаргалка Страница 2

Тут можно читать бесплатно Юлия Щербакова - Электроника и электротехника. Шпаргалка. Жанр: Научные и научно-популярные книги / Техническая литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Юлия Щербакова - Электроника и электротехника. Шпаргалка

Юлия Щербакова - Электроника и электротехника. Шпаргалка краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Юлия Щербакова - Электроника и электротехника. Шпаргалка» бесплатно полную версию:
Все выучить – жизни не хватит, а экзамен сдать надо. Это готовая «шпора», написанная реальным преподом. Здесь найдешь все необходимое по «Общей электронике и электротехнике», а остальное – дело техники. Ни пуха, ни пера!Данное учебное пособие предназначено для студентов высших и средних специальных учебных заведений, изучающих электронику и электротехнику.

Юлия Щербакова - Электроника и электротехника. Шпаргалка читать онлайн бесплатно

Юлия Щербакова - Электроника и электротехника. Шпаргалка - читать книгу онлайн бесплатно, автор Юлия Щербакова

Рис. 4. Схема электрических цепей с последовательным соединением резистивных элементов

Пример: последовательно с приемником r часто включается резистор rр для регулирования напряжения, тока и мощности приемника (рис. 4а). Для расширения пределов измерения вольтметров последовательно с ними включают добавочные резисторы rд (рис. 4б). С помощью реостата, включаемого последовательно в различные ветви цепи двигателя постоянного тока, производят изменение его пускового тока или частоты вращения.

В общем случае при последовательном соединении n резистивных элементов (рис. 4в) ток в цепи, напряжения на элементах и потребляемые ими мощности определяются следующими соотношениями:

где k = 1, 2, ..., n – номер элемента;

– эквивалентное сопротивление цепи.

Напряжение и мощность всей цепи:

Соотношение между напряжениями, мощностями и сопротивлениями элементов:

где l = 1, 2, ..., n – номер элемента.

Приемники электрической энергии последовательно, как правило, не соединяются, так как при этом требуется согласование номинальных данных приемников, исключается возможность независимого их включения и отключения, а при выходе из строя одного из приемников отключаются также остальные приемники. Чаще их включают параллельно.

5. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ С ПАРАЛЛЕЛЬНЫМ СОЕДИНЕНИЕМ РЕЗИСТИВНЫХ ЭЛЕМЕНТОВ

Параллельным называется такое соединение резистивных элементов, при котором соединяются между собой как условные начала всех элементов, так и их концы (рис. 5а). Характерным для параллельного соединения является одно и то же напряжение U на выводах всех элементов. Параллельно соединяются различные приемники электрической энергии и другие элементы электрических цепей, рассчитанные на одно и то же напряжение. При параллельном соединении не требуется согласовывать номинальные данные приемников, возможно включение и отключение любых приемников независимо от остальных, а при выходе из строя какого(либо приемника остальные остаются включенными.

Рис. 5. Схемы электрических цепей с параллельным соединением резистивных элементов

Параллельное соединение применяется часто для расширения пределов измерения амперметров (рис. 5б): если ток I в электрической цепи превышает номинальный ток Iном амперметра, параллельно с ним включают шунтирующий резистор rш. Нередко параллельное соединение используют для уменьшения эквивалентного сопротивления какого-либо участка электрической цепи.

Токи и мощности параллельно соединенных ветвей (рис. 5а) при U = const не зависят друг от друга и определяются по формулам:

Ток и мощность всей цепи:

где

– эквивалентная проводимость;

rэ = 1 / gэ – эквивалентное сопротивление.

Соотношения между токами, мощностями, проводимостями и сопротивлениями:

При увеличении числа параллельно соединенных ветвей эквивалентная проводимость электрической цепи возрастает, а эквивалентное сопротивление, соответственно, уменьшается. Это приводит к увеличению тока I. Если напряжение остается постоянным, то увеличивается также общая мощность P; токи и мощности ранее включенных ветвей не изменяются.

6. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ,СОДЕРЖАЩИЕ СОЕДИНЕНИЯ РЕЗИСТИВНЫХ ЭЛЕМЕНТОВ ТРЕУГОЛЬНИКОМ

Под соединением треугольником (рис. 6а) понимается такое, при котором вывод К1 одного из элементов соединяется с выводом Н2 второго, вывод К2 второго – с выводом Н3 третьего, а вывод К3 третьего – с выводом Н1 первого элемента. Узловые точки a, b и c подключаются к остальной части электрической цепи.

Рис. 6. Схема соединения резистивных элементов треугольником (а) и звездой (б)

Для упрощения анализа и расчета некоторых электрических цепей, содержащих соединения резистивных элементов треугольником, целесообразно заменить их эквивалентными резистивными элементами, соединенными звездой (рис. 6б). Примером подобных электрических цепей являются мостовые цепи (рис. 7а). Как видно, в мостовой цепи резистивные элементы образуют два смежных треугольника (rab, rbc, rca и rbc, rbd, rdc) и нет ни одного элемента, который был бы соединен с другими последовательно или параллельно. Это осложняет расчет и анализ электрической цепи. Если заменить, например, резистивные элементы rab, rbc и rca, соединенные треугольником, эквивалентными элементами ra, rb и rc, соединенными звездой (рис. 7б), получим цепь со смешанным соединением резистивных элементов.

Рис. 7. Схема мостовой цепи (а) и соответствующая ей схема после замены одного из треугольников звездой (б)

Замена треугольника резистивных элементов эквивалентной звездой должна производиться таким образом, чтобы после указанной замены токи в остальной части цепи, а также напряжения между точками ab, bc и ca остались без изменения.

С помощью законов Кирхгофа можно получить следующие формулы для определения сопротивлений эквивалентной звезды:

Иногда оказывается целесообразным заменить резистивные элементы, соединенные звездой, эквивалентным треугольником. Соответствующие формулы можно получить путем совместного решения выражений (1).

7. ПОНЯТИЕ ОБ ИСТОЧНИКЕ ТОКА

При расчете и анализе электрических цепей используют источники электрической энергии с параметрами E и r0, т. е. источники ЭДС, либо источники с указанными напряжениями. Иногда оказывается целесообразным заменить источник ЭДС эквивалентным ему источником тока, параметрами которого являются неизменные по значению ток короткого замыкания Ik и сопротивление r0. Рассмотрим источник тока на примере электрической цепи (см. рис. 8), в которой источник ЭДС заменим эквивалентным источником тока.

Рис. 8. Электрическая цепь

Источник тока следует считать эквивалентным в том случае, если после замены им источника ЭДС значения тока I, напряжения U и отдаваемой источником мощности UI при различных значениях сопротивления r внешней цепи остаются без изменения. Это условие будет выполнено, если источник тока будет иметь такую же внешнюю характеристику, какую имеет источник ЭДС.

Воспользуемся указанным соображением для обоснования структуры электрической цепи источника тока. Разделив левую и правую части уравнения внешней характеристики источника ЭДС на сопротивление r0, получим

где

– ток короткого замыкания источника ЭДС, являющийся вместе с тем одним из параметров источника тока;

– некоторый ток, определяемый как частное от деления U на r0.

Решив (1) относительно 

 или Ik = I0 + I. (2)

Так как токи I0 и I определяются путем деления одного и того же напряжения U на соответствующие сопротивления, то в электрической цепи с источником тока должны быть две ветви с соединенными параллельно резистивными элементами r0 и r. Согласно (2) параллельно указанным ветвям должна быть включена третья ветвь, содержащая элемент с током Ik.

Рис. 9. Схема электрической цепи

Схема электрической цепи, эквивалентная приведенной на рисунке 8, но содержащая источник тока, дана на рисунке 9а. Элемент с током I в совокупности с резистором r0 и представляет собой источник тока:

Получили уравнение внешней характеристики

I(U) источника тока. Уравнение (3) и внешняя характеристика, построенная с помощью этого уравнения (рис. 9б), дадут при любом режиме работы цепи такие же значения тока I и напряжения U, как и в случае источника ЭДС.

8. МЕТОД ЗАКОНОВ КИРХГОФА. МЕТОД КОНТУРНЫХ ТОКОВ

Покажем на схеме положительные направления известных и неизвестных величин. Сначала следует составить более простые уравнения по первому закону Кирхгофа, максимальное число которых должно быть на единицу меньше числа узловых точек. Недостающие уравнения следует составить по второму закону Кирхгофа.

В качестве примера составим схему уравнений для определения токов в электрической цепи, схема которой изображена на рисунке 10. Будем считать, что ЭДС и напряжения с их направлениями, а также сопротивления известны. Поскольку данная цепь имеет пять ветвей с неизвестными токами, необходимо составить пять уравнений. Выбрав положительные направления токов I1, I2, I3, I4 и I5 для узлов а и б, а также для контуров агда, абга и бвгб при обходе последних по часовой стрелке, получим:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.