Литагент «Научная книга» - Гидравлика Страница 2

Тут можно читать бесплатно Литагент «Научная книга» - Гидравлика. Жанр: Научные и научно-популярные книги / Техническая литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Литагент «Научная книга» - Гидравлика

Литагент «Научная книга» - Гидравлика краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Литагент «Научная книга» - Гидравлика» бесплатно полную версию:
Информативные ответы на все вопросы курса «Гидравлика» в соответствии с Государственным образовательным стандартом.

Литагент «Научная книга» - Гидравлика читать онлайн бесплатно

Литагент «Научная книга» - Гидравлика - читать книгу онлайн бесплатно, автор Литагент «Научная книга»

где ρ – плотность жидкости;

П1, П2 – значение поле массовых сил в этих точках.

Поверхность, для любых двух точек которой давление одно и то же, называется поверхностью равного давления.

5. Равновесие однородной несжимаемой жидкости под воздействием силы тяжести

Это равновесие описывается уравнением, которое называется основным уравнением гидростатики.

Для единицы массы покоящейся жидкости

Для любых двух точек одного и того же объема, то

Полученные уравнения описывают распределение давления в жидкости, которая находится в равновесном состоянии. Из них уравнение (2) является основным уравнением гидростатики.

Для водоемов больших объемов или поверхности требуется уточнения: сонаправлен ли радиусу Земли в данной точке; насколько горизонтальна рассматриваемая поверхность.

Из (2) следует

p = p0 + ρg(z – z0), (4)

где z1 = z; p1 = p; z2 = z0; p2 = p0.

p = p0 + ρgh, (5)

где ρgh – весовое давление, которое соответствует единичной высоте и единичной площади.

Давление р называют абсолютным давлением pабс.

Если р > pабс, то p – pатм = p0 + ρgh – pатм – его называют избыточным давлением:

pизч = p < p0, (6)

если p < pатм, то говорят о разности в жидкости

pвак = pатм – p, (7)

называют вакуумметрическим давлением.

6. Законы Паскаля. Приборы измерения давления

Что произойдет в других точках жидкости, если приложим некоторое усилие Δp? Если выбрать две точки, и приложить к одной из них усилие Δp1, то по основному уравнению гидростатики, во второй точке давление изменится на Δp2.

откуда легко заключить, что при равности прочих слагаемых должно быть

Δp1= Δp2. (2)

Мы получили выражение закона Паскаля, который гласит: изменение давления в любой точке жидкости в равновесном состоянии передается во все остальные точки без изменений.

До сих пор мы исходили из предположения, что ρ = const. Если иметь сообщающийся сосуд, который заполнен двумя жидкостями с ρ1≠ ρ2, причем внешнее давление p0= p1= pатм, то согласно (1):

ρ1gh = ρ2gh, (3)

откуда

где h1, h2 – высота от раздела поверхности до соответствующих свободных поверхностей.

Давление – физическая величина, которая характеризует силы, направленные по нормали к поверхности одного предмета со стороны другого.

Если силы распределены нормально и равномерно, то давление

где – F суммарная приложенная сила;

S – поверхность, к которой приложена сила.

Если силы распределены неравномерно, то говорят о среднем значении давления или считают его в отдельно взятой точке: например, в вязкой жидкости.

Приборы для измерения давления

Одним из приборов, которым измеряют давление, является манометр.

Недостатком манометров является то, что у них нее большой диапазон измерений: 1—10 кПа.

По этой причине в трубах используют жидкости, которые «уменьшают» высоту, например, ртуть.

Следующим прибором для измерения давления является пьезометр.

7. Анализ основного уравнения гидростатики

Высоту напора принято называть пьезометрической высотой, или напором.

Согласно основному уравнению гидростатики,

p1+ ρghA= p2+ ρghH,

где ρ – плотность жидкости;

g – ускорение свободного падения.

p2, как правило, задается p2= pатм, поэтому, зная hА и hH, нетрудно определить искомую величину.

2. p1= p2= pатм. Совершенно очевидно, что из ρ = const, g = const следует, что hА= hH. Этот факт называют также законом сообщающихся сосудов.

3. p1< p2= pатм.

Между поверхностью жидкости в трубе и ее закрытым концом образуется вакуум. Такие приборы называют вакуумметры; их используют для измерения давлений, которые меньше атмосферного.

Высота, которая и является характеристикой изменения вакуума:

Вакуум измеряется в тех же единицах, что и давление.

Пьезометрический напор

Вернемся к основному гидростатическому уравнению. Здесь z – координата рассматриваемой точки, которая отсчитывается от плоскости XOY. В гидравлике плоскость XOY называется плоскостью сравнения.

Отсчитанную от этой плоскости координату z называют пооразному: геометрической высотой; высотой положения; геометрическим напором точки z.

В том же основном уравнении гидростатики величии на p/ρgh – также геометрическая высота, на которую поднимается жидкость в результате воздействия давления р. p/ρgh так же, как и геометрическая высота, измеряется в метрах. В случае, если через другой конец трубы на жидкость действует атмосферное давление то жидкость в трубе поднимается на высоту pизб/ρgh, которую называют вакуумметрической высотой.

Высоту, соответствующую давлению pвак, называют вакуумметрической.

В основном уравнении гидростатики сумма z + p/ρgh – гидростатический напор Н, различают также пьезометрический напор Hn , который соответствует атмосферному давлению pатм/ρgh:

Hn < H

8. Гидравлический пресс

Гидравлический пресс служит для совершения на коротком пути большей работы. Рассмотрим работу гидравлического пресса.

Для этого, чтобы совершалась работа над телом, надо воздействовать на поршень с некоторым давлением Р. Это давление, как и Р2, создается следующим образом.

Когда поднимается поршень насоса с площадью нижней поверхности S2, то он закрывает первый клапан и открывает второй. После заполнения цилиндра водой второй клапан закрывается, открывается первый.

В результате вода через трубу заполняет цилиндр и давит на поршень с помощью нижнего сечения S1 с давлением Р2.

Это давление, как давление Р1, сжимает тело.

Совершенно очевидно, что Р1– это то же самое давление, что и Р2, разница только в том, что они воздействуют на разные по величине площади S2 и S1.

Другими словами, давления:

P1= pS1 и P2= pS2. (1)

Выразив p = P2/S2 и подставив в первую формулу, получим:

Из полученной формулы следует важный вывод: на поршень с большей площадью S1 со стороны поршня с меньшей площадью S2 передается давление во столько раз большее, во сколько раз S1> S2.

Однако на практике из-за сил трения до 15 % этой передаваемой энергии теряется: тратится на преодоление сопротивления сил трения.

И все же у гидравлических прессов коэффициент полезного действия η= 85 % – достаточно высокий показатель.

В гидравлике формула (2) перепишется в следующем виде:

где P1 обозначено как R;

S1– ω1;

S2– ω2.

Гидравлический аккумулятор

Гидравлический аккумулятор служит для поддержания давления в подключенной к нему системе постоянным.

Достижение постоянства давления происходит следующим образом: сверху на поршень, на его площадь ω, действует груз Р.

Труба служит для передачи этого давления по всей системе.

Если в системе (механизме, установке) жидкости в избытке, то избыток по трубе поступает в цилиндр, поршень поднимается.

При недостатке жидкости поршень опускается, и создаваемое при этом давление р, по закону Паскаля, передается на все части системы.

9. Определение силы давления покоящейся жидкости на плоские поверхности. Центр давления

Для того, чтобы определить силу давления, будем рассматривать жидкость, которая находится в покое относительно Земли. Если выбрать в жидкости произвольную горизонтальную площадь ω, то, при условии, что на свободную поверхность действует ратм= р0, на ω оказывается избыточное давление:

Ризб = ρghω. (1)

Поскольку в (1) ρghω есть не что иное, как mg, так как hω и ρV = m, избыточное давление равно весу жидкости, заключенной в объеме hω. Линия действия этой силы проходит по центру площади ω и направлена по нормали к горизонтальной поверхности.

Формула (1) не содержит ни одной величины, которая характеризовала бы форму сосуда. Следовательно, Ризб не зависит от формы сосуда. Поэтому из формулы (1) следует чрезвычайно важный вывод, так называемый гидравлический парадокс – при разных формах сосудов, если на свободную поверхность оказывается одно и тоже р0, то при равенстве плотностей ρ, площадей ω и высот h давление, оказываемое на горизонтальное дно, одно и то же.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.