А. Кашкаров - Электронные самоделки Страница 33

Тут можно читать бесплатно А. Кашкаров - Электронные самоделки. Жанр: Научные и научно-популярные книги / Техническая литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
А. Кашкаров - Электронные самоделки

А. Кашкаров - Электронные самоделки краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «А. Кашкаров - Электронные самоделки» бесплатно полную версию:
Представлены описания самодельных устройств, доступных для повторения в домашних условиях начинающими радиолюбителями. Рассмотрены источники питания, таймеры, автоматы управления освещением, холодильником, сотовым телефоном, домашней сигнализацией, охранные системы, «радионяня» и другие конструкции на все случаи жизни для города и села, дома, гаража и дачи. Описаны индикаторы протечки, токовой перегрузки, датчики утечки газа, пожарной сигнализации, парковки и др. Даны практические советы и рекомендации по доработке и простому ремонту фотоаппаратов, сканеров, телефонов и другой бытовой техники.Для широкого круга читателей.

А. Кашкаров - Электронные самоделки читать онлайн бесплатно

А. Кашкаров - Электронные самоделки - читать книгу онлайн бесплатно, автор А. Кашкаров

С входами и выходами дело сложнее из-за уровней полного сопротивления и из-за того, что надо обеспечить прохождение полезных сигналов, которые могут иметь тот же частотный диапазон, что и помехи. В устройствах типа усилителей звуковых частот можно использовать фильтры нижних частот на входе и на выходе (многие помехи от близлежащих радиостанций попадают в схему через провода громкоговорителя, выполняющего роль антенн). В других ситуациях необходимы, как правило, экранированные провода. Провода с сигналами низкого уровня, в частности при высоком уровне полного сопротивления, всегда нужно экранировать. То же относится к внешнему корпусу прибора.

Емкостная связь

Внутри прибора сигналы могут проходить всюду путем электростатической связи: в какой-нибудь точке в приборе происходит скачок сигнала напряжением 10 В и на расположенном рядом входе с большим полным сопротивлением произойдет тот же скачок. Что можно сделать?

Лучше всего уменьшить емкость между этими точками (разнеся их), добавить экран (цельнометаллический футляр или даже металлическую экранирующую оплетку, исключающую этот вид связи), придвинуть провода вплотную к плате заземления (которая «глотает» электростатические пограничные поля, очень сильно ослабляя связь) и, если возможно, снизить полное сопротивление насколько удастся.

Магнитная связь

Низкочастотные магнитные поля не ослабляются металлической экранировкой. Лучший способ борьбы с этим явлением — следить, чтобы каждый замкнутый контур внутри схемы имел минимальную площадь, и стараться, чтобы схема не имела проводов в виде петли. Эффективны в борьбе с магнитной наводкой витые пары, т. к. площадь каждого витка мала, а сигналы, наведенные в следующих друг за другом витках, компенсируются.

При работе с сигналами очень низкого уровня, или устройствами, очень чувствительными к магнитным наводкам (катушки индуктивности, проволочные сопротивления), может оказаться желательным магнитное экранирование. Если внешнее магнитное поле велико, то лучше применять экран из материала с высокой магнитной проницаемостью (например, из железа или фольги) для того, чтобы предотвратить магнитное насыщение внутреннего экрана. Наиболее простым решением является удаление мешающего источника магнитного поля.

Радиочастотные помехи

Наводки радиочастоты могут быть очень коварными. Так, не внушающая подозрений часть схемы может работать как эффективный резонансный контур с огромным резонансным пиком. Кроме общего экранирования, желательно все провода делать как можно короче и избегать образования петель, в которых может возникнуть резонанс. Классической ситуацией паразитного приема высоких частот является пара шунтирующих конденсаторов, что часто рекомендуется для улучшения шунтирования питания. Такая пара образует отличный паразитный настроенный контур где-то в области от ВЧ до СВЧ (от десятков до сотен мегагерц), самовозбуждающийся при наличии усиления.

4.8.3. Обеспечение помехозащищенности аппаратурных средств компьютерной техники

Уменьшение помех в аппаратуре, собранной на интегральных микросхемах

Для подавления помех, вызванных ударами молнии в силовые линии, переключениями реле, переходными процессами при пуске электродвигателя, электрическими разрядами в аппаратуре или вблизи нее, высокочастотными полями необходима тщательная проработка цепей питания, заземления, экранирования, топологии печатных плат с учетом конкретных характеристик интегральных схем.

Интегральные схемы (ИС) ТТЛ (транзисторно-транзисторной логики), представляющие собой токовые приборы с малым входным сопротивлением, особенно чувствительны к разности потенциалов цепей питания между отдельными ИС, возникающей из-за паразитных токов.

ИС МДП (металл-диэлектрик-полупроводник) управляются напряжением и имеют высокое входное и малое выходное сопротивление, поэтому они особенно чувствительны к излучаемым помехам. Вторичная чувствительность к паразитным токам возникает в результате помех от соседних проводников, по которым передаются импульсные сигналы.

Линейные ИС имеют высокое входное и малое выходное сопротивления. В отличие от цифровых ИС для линейных ИС не указываются диапазоны напряжений. Шумовые выбросы могут просачиваться в усилитель с высоким коэффициентом усиления по шинам питания.

Практические рекомендации

Для уменьшения восприимчивости аппаратуры на ИМС (интегральных микросхемах) к электромагнитным помехам на практике необходимо:

□ максимально применять развязку по цепи питания, подключая конденсаторы индивидуальной развязки к отдельным микросхемам или группам микросхем;

□ выбирать достаточную ширину печатных проводников шин питания;

□ не путать шину «земля» (ШЗ) с «общей шиной» системы (обратный провод источника питания). ШЗ не должна использоваться для передачи мощности. Проводники «земля» и «общий» необходимо соединять только в одной точке системы, иначе образуется замкнутый контур, излучающий помехи в схему;

□ питать цепи, потребляющие большой ток, от отдельного источника. В этом случае переменные составляющие тока питания не проникают в шины, подводящие питание к маломощным логическим схемам. Следует иметь в виду, что проводники, передающие резкие изменения тока, индуктивно связаны с соседними проводниками, а последние передают фронты напряжений через емкостные связи соседним участкам схемы. В связи с этим размещению таких проводников надо уделять особое внимание;

□ выбирать резисторы утечки с минимальным сопротивлением, допускаемым с точки зрения мощности потребления или других условий. Это особенно важно в ИС МДП-типа;

□ в устройствах, построенных на ИС ТТЛ-типа, неиспользуемые логические входы надо подключить к положительной шине «питание» через резистор 1 кОм. В устройствах на МДП ИС неиспользуемые логические входы подключаются соответственно к положительной или отрицательной шинам, т. к. в противном случае может возникнуть состояние неопределенности в работе ИС;

□ применять в линейных устройствах резисторы и конденсаторы, имеющие допуск на разброс параметров до 1 %. Исключение могут составлять резисторы утечки и конденсаторы блокирующих цепей, где допускается 20 % разброс параметров. По окончании разработки следует изучить влияние изменения параметров компонентов на работу схемы.

Если указанные ранее меры не дают желаемого эффекта, то можно применить фильтрацию сетевого напряжения и экранирование. Корпуса из металла или с проводящим покрытием в значительной степени ослабляют внешние помехи. Окна, образуемые индикаторами, шкалами или измерительными приборами, можно закрыть медными экранами. Фильтры сетевого напряжения обеспечивают защиту от помех из силовой сети, но их необходимо согласовать с аппаратурой.

Наиболее успешная борьба с помехами возможна лишь в том случае, когда разработка электрических схем и конструкций радиоэлектронной аппаратуры неразрывно связаны.

Аналогичный подход справедлив и для всех прочих электронных устройств.

4.9. Как проверить яркость разных осветительных ламп

В быту мы каждый день сталкиваемся с различными осветительными приборами, большинство из которых работают от сети 220 В и являются лампами накаливания или лампами дневного света. И те и другие выполняют одну и ту же функцию — освещение, однако принцип их действия совершенно разный. Если при замене ламп накаливания с перегоревшей спиралью мы часто ориентируемся на ее мощность и представляем себе, что сила света, исходящая от данной лампы накаливания, пропорциональна мощности (значение мощности наносится на колбу или цоколь лампы накаливания), то при замене ламп дневного света (далее ЛДС) ее мощность не всегда может быть пропорциональна силе света, а значит, и потоку освещенности территории, который является для нас окончательным и главным результатом эффективности работы ламп. Особенно это касается небольших компактных светильников с ЛДС, которые в быту применяют как локальные подсветки уголков помещения, кладовок, аквариумов и других мест.

В большинстве светильников с ЛДС сегодня применяют ЭПРА (электронные пускорегулирующие аппараты), представляющие собой высокочастотный преобразователь напряжения. Их также называют еще электронные трансформаторы. Эти устройства являются конкурентами классическим схемам с дросселем, конденсатором и стартером. Именно ЭПРА применяются в маломощных бытовых светильниках локальной подсветки и в современных аквариумах.

При неоднократных заменах вышедших из строя ЛДС в локальных светильниках, я столкнулся с тем, что не все лампы ЛДС (одинаковой мощности, размеров и даже производителя) дают одинаковый световой поток.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.