Юлия Щербакова - Электроника и электротехника. Шпаргалка Страница 5
- Категория: Научные и научно-популярные книги / Техническая литература
- Автор: Юлия Щербакова
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 8
- Добавлено: 2019-02-02 17:00:28
Юлия Щербакова - Электроника и электротехника. Шпаргалка краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Юлия Щербакова - Электроника и электротехника. Шпаргалка» бесплатно полную версию:Все выучить – жизни не хватит, а экзамен сдать надо. Это готовая «шпора», написанная реальным преподом. Здесь найдешь все необходимое по «Общей электронике и электротехнике», а остальное – дело техники. Ни пуха, ни пера!Данное учебное пособие предназначено для студентов высших и средних специальных учебных заведений, изучающих электронику и электротехнику.
Юлия Щербакова - Электроника и электротехника. Шпаргалка читать онлайн бесплатно
Мгновенная мощность цепи:p = ui = ImsinωtUm × sin (ωt +φ)
Средняя мощность за период:
Подставив вместо cos φ его значение, получим Pср = UI cosφ = UI(r/z) = i2r = P
Таким образом, среднее значение мощности цепи с r, С, так же как и цепи с r, L, представляет собой активную мощность, которая выделяется в активном сопротивлении r в виде теплоты.
На (рис. 16в) изображен график мгновенной мощности цепи с r, С.
Энергетические процессы цепи с r, С можно рассматривать как совокупность процессов, происходящих отдельно в цепи с r и С. Из сети непрерывно поступает активная мощность. Реактивная мощность, обусловленная электрическим полем емкости, непрерывно циркулирует между источником и цепью. Ее среднее значение за период равно нулю.
15. ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ R, L, C
Уравнение напряжений для цепи (рис. 17а) имеет вид: Ū = Ūr + Ūl+ Ūc
Рис. 17. Электрическая цепь, содержащая последовательно включенные r, L и С (а), ее векторная диаграмма (б), треугольники сопротивлений и мощностей (в и г) цепи при xL > xC, векторная диаграмма (д), треугольники сопротивлений и мощностей (е и ж) цепи при xC > xL.
Векторные диаграммы для цепи (рис. 17а) изображены на рисунках 17б и 17в. Вектор напряжения на активном сопротивлении совпадает с вектором тока, вектор напряжения на индуктивности Ūl опережает вектор тока на 90°, вектор напряжения на емкости Ūc отстает от вектора тока на 90°. Следовательно, между векторами напряжения на индуктивности и емкости образуется угол в 180°.
Если xL > xC, то и UL > Ūc и векторная диаграмма будет такой (см. рис. 17б), а треугольник сопротивлений – на рисунке 17в, где x = xL – xC. Если xC > xL, то UC > UL и векторная диаграмма будет иметь вид, изображенный на рисунке 17е, где x = xC – xL.
Значение напряжения, приложенного к цепи:
Выразив напряжение через ток и сопротивления, получим
Последнее выражение представляет собой закон Ома для последовательной цепи r, L, C:
где z – полное сопротивление цепи;
x – реактивное сопротивление цепи.
На основании проведенного анализа цепи, состоящей из последовательно соединенных r, L, C, можно сделать следующие выводы.
Если xL > xC, то напряжение сети опережает по фазе ток на угол φ: υ = Um sin (ωt + φ).
Цепь имеет активно(индуктивный характер.
Если xC > xL, то напряжение сети отстает по фазе от тока на угол φ: υ = Um sin (ωt + φ).
Цепь имеет активно(емкостный характер.
16. АКТИВНАЯ, РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ ЦЕПИ
Активная мощность цепи – P = UrI = I2r, Вт.
Реактивная индуктивная мощность цели, обусловленная энергией магнитного поля, – QL = ULI = I2xL, ВАР.
Реактивная емкостная мощность цепи, обусловленная энергией электрического поля, – QC = UCI = I2xC, ВАР.
Реактивная мощность цепи Q = QL – QC = I2x, ВАР,– это та мощность, которой приемник обменивается с сетью. Полная мощность цепи – S – UI = I2z, ВА, cos φ = коэффициент мощности цепи. Тогда P = S cos φ = UI cos φ; Q = S sin φ = UI sin φ;
За единицу активной мощности принят ватт (Вт), реактивной мощности – вольт-ампер реактивный (ВАР), полной мощности – вольт-ампер(ВА).
Реактивные (индуктивная, емкостная) мощности, обусловленные соответственно энергией магнитного поля индуктивности и электрического поля емкости, не совершают никакой полезной работы, но они оказывают существенное влияние на режим работы электрической цепи. Циркулируя по проводам трансформаторов, генераторов, двигателей, линий передач, они нагревают их. Поэтому расчет проводов и других элементов устройств переменного тока производят исходя из полной мощности, которая учитывает активную и реактивную мощности.
Рис. 18. Схема включения приборов дм измерении активной, реактивной и полной мощностей цепи, a также ее параметров
Коэффициент мощности имеет большое практическое значение: он показывает, какая часть полной мощности является активной мощностью. Полная мощность и коэффициент мощности наряду с другими параметрами являются расчетными величинами и в конечном счете определяют габаритные размеры трансформаторов, генераторов, двигателей и других электротехнических устройств.
Измерение активной, реактивной, полной мощностей и cos φ, а также параметров цепи, например r и L, можно произвести с помощью ваттметра, амперметра и вольтметра, включенных в цепь по схеме, изображенной на рисунке 18.
Ваттметр измеряет активную мощность Р цепи. Полная мощность цепи равна произведению показаний вольтметра и амперметра.
Реактивную (индуктивную) мощность и коэффициент мощности цепи (рис. 18) определяют расчетным путем по формулам:
Активное сопротивление находят из формулы:
Полное сопротивление цепи -
Индуктивное сопротивление -
Индуктивность L определяют из формулы: xL = 2pL,
откуда
17. РЕЗОНАНС НАПРЯЖЕНИЙ
Известно, что в механической системе резонанс наступает при равенстве собственной частоты колебаний системы и частоты колебаний возмущающей силы, действующей на систему. Колебания механической системы, например колебания маятника, сопровождаются периодическим переходом кинетической энергии в потенциальную и наоборот. При резонансе механической системы малые возмущающие силы могут вызывать большие колебания системы, например большую амплитуду колебаний маятника.
В цепях переменного тока, где есть индуктивность и емкость, могут возникнуть явления резонанса, которые аналогичны явлению резонанса в механи(
ческой системе. Полная аналогия – равенство собственной частоты колебаний электрического контура частоте возмущающей силы (частоте напряжения сети) – возможна не во всех случаях.
В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи имеет место при определенном соотношении ее параметров r, L, C, когда резонансная частота цепи равна частоте приложенного к ней напряжения.
Резонанс в электрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля и наоборот.
При резонансе в электрической цепи малые напряжения, приложенные к цепи, могут вызвать значительные токи и напряжения на отдельных участках. В цепи, где r, L, C соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r, L, C соединены параллельно, – резонанс токов.
Рассмотрим явление резонанса напряжений на примере цепи (рис. 19).
Как отмечалось, при резонансе ток и напряжение совпадают по фазе, т. е. угол φ = 0, и полное сопротивление цепи равно ее активному сопротивлению:
Рис. 19. Явление резонанса напряжений
Это равенство будет иметь место, если xL = xC, т. е. реактивное сопротивление цепи равно нулю: x = xL – xC.
Выразив xL и xC соответственно через L, C и f,
получим:
где f – частота напряжения, подведенного к контуру;
fрез – резонансная частота.
Таким образом, при xL = xC в цепи возникает резонанс напряжений, так как резонансная частота равна частоте напряжения, подведенного к цепи.
Из выражения закона Ома для последовательной цепи:
При резонансе:
IxL = IxC = UL = UC; Ur = Ir = U;
Жалоба
Напишите нам, и мы в срочном порядке примем меры.