Карл Гильзин - В небе завтрашнего дня Страница 7
- Категория: Научные и научно-популярные книги / Техническая литература
- Автор: Карл Гильзин
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 52
- Добавлено: 2019-02-02 17:45:34
Карл Гильзин - В небе завтрашнего дня краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Карл Гильзин - В небе завтрашнего дня» бесплатно полную версию:Эта книга представляет собой живой, увлекательный рассказ об авиации, ракетной технике и космонавтике, их настоящем и будущем. Она вводит юного читателя в мир необычных летательных аппаратов атмосферной и заатмосферной авиации. Сегодня эти аппараты еще только рождаются в замыслах ученых и конструкторов, на чертежных досках и экспериментальных аэродромах, но именно им принадлежит будущее. В 1959 году книга «В небе завтрашнего дня» удостоена второй премии на конкурсе Министерства просвещения РСФСР на лучшую книгу о науке и технике для детей. Автор книги — ученый-специалист и талантливый популяризатор науки. Созданные им книги («Путешествие к далеким мирам» и др.) переизданы во многих странах мира.Прим. OCR: Одно из лучших изданий о авиации для детей, не потерявшее ценности до сих пор (по сути сегодняшняя авиация ничего принципиального, если не считать «стелс», не добавила). Немного наивное восхищение и прогнозы будущего отражают общее настроение в обществе того времени.
Карл Гильзин - В небе завтрашнего дня читать онлайн бесплатно
Но и для подобных силовых установок существует предельно возможная скорость полета, связанная с температурными ограничениями. Еще большие скорости уже недоступны для воздушно-реактивных двигателей. Это — удел двигателей, не использующих атмосферный воздух, двигателей, способных работать на любых, самых больших высотах и вне атмосферы, в мировом пространстве.
Это — ракетные двигатели и прежде всего изобретенный К. Э. Циолковским жидкостный ракетный двигатель.
12* Об этом сообщает, например, журнал «Спейскрафт», сентябрь 1963 г., и др.
Глава IV. Двигатель-рекордист
В этой главе рассказывается об изобретенном Циолковским жидкостном ракетном двигателе, об одержанных им замечательных победах, о его необычайной «прожорливости» и роли в авиации будущего.
Чтобы двигатель не нуждался в окружающем нас воздухе, сгорание топлива в нем должно происходить без атмосферного кислорода. Известны многие примеры подобного сгорания. Вот взлетела пороховая ракета, оставляющая за собой длинный дымовой след. Порох сгорает, как известно, без воздуха, он может гореть и в абсолютном вакууме, и под водой. Плесните крепкой азотной кислотой на пролитый анилин — произойдет воспламенение, в котором воздух также не принимает никакого участия.
Особенно интересен для нас последний пример, когда одна жидкость горит в другой. Это явление и лежит в основе работы жидкостного ракетного двигателя. Одна из жидкостей — горючее: например бензин, керосин, спирт. Другая жидкость — окислитель: азотная кислота, жидкий кислород и др. Химическая реакция между горючим и окислителем приводит к бурному газообразованию с выделением большого количества тепла. Когда такая реакция происходит в камере сгорания жидкостного ракетного двигателя при давлении в десятки атмосфер и температуре, доходящей до 3000 и более градусов, то через сопло вытекают раскаленные газы со скоростью 2,5–3 километра в секунду. Сила реакции вытекающих из двигателя газов, то есть реактивная тяга жидкостного ракетного двигателя, оказывается достаточной для полета со скоростью, недостижимой для двигателей любого другого типа.
Это объясняется тем, что жидкостный ракетный двигатель обладает рекордно малым удельным весом, то есть весом, приходящимся на килограмм тяги. С полным правом и его можно назвать «летающей топкой» — настолько он прост. Создание жидкостных ракетных двигателей большой тяги не представляет особых трудностей. Уже сейчас есть такие двигатели для дальних тяжелых ракет с тягой в несколько десятков и даже сотен тонн, развивающие при скорости полета 6–7 километров в секунду мощность во много миллионов лошадиных сил!
Неудивительно, что с помощью малогабаритных и мощных 13* жидкостных ракетных двигателей, способных работать на самых больших высотах, в последнее время удалось достигнуть рекордных скоростей и высот полета самолетов. Такой же двигатель был установлен и на самолете, впервые превысившем скорость звука в горизонтальном полете.
По данным зарубежной печати, экспериментальный исследовательский самолет США, получивший обозначение «Х-15» и снабженный жидкостным ракетным двигателем тягой 25 850 килограммов, в 1962 году развил скорость 6693 километра в час и достиг максимальной высоты 95 936 метров 14*. Эти результаты можно считать в настоящее время рекордными для самолета с человеком. В частности, они официально зарегистрированы Международной авиационной федерацией в качестве таких рекордов 15*. Однако следует подчеркнуть, что абсолютные мировые рекорды скорости и высоты полета на самолете, зарегистрированные той же Федерацией, установлены советским летчиком Г. К. Мосоловым в 1962 году на самолете с турбореактивным двигателем. В одном полете он достиг скорости 2681 километр в час, в другом — высоты 34 714 метров. При выполнении рекордного скоростного полета в отдельных заходах скорость превышала 3000 километров в час.
Регистрация сразу двух различных рекордов и существенная разница в достигнутых значениях высоты и скорости полета объясняется просто. Самолет «Х-15» совершал свои полеты не самостоятельно, а с помощью другого самолета, заносившего его на большую высоту. Только там на этой высоте самолет «Х-15» отделялся от самолета- носителя и переходил на самостоятельный полет. О том, как осуществляются подобные полеты, будет подробнее рассказано в конце этой главы.
Впереди — еще более высокие достижения ракетных самолетов. Об их возможности свидетельствуют полеты беспилотных летательных аппаратов с жидкостными ракетными двигателями — дальних и высотных ракет, управляемых снарядов и, в особенности, космических ракет. В этих полетах уже достигнуты значительно большие высоты и скорости полета.
Правда, это достижения беспилотной авиации и ракетной техники. При полете человека возникают новые трудности: должна быть предусмотрена герметическая кабина для летчика, величина ускорений ограничивается допустимыми для человека инерционными перегрузками, ракета должна быть крылатой и др. Но эти трудности не принципиальны, и нет сомнений, что полет самолета с человеком со скоростью, во много раз превышающей скорость звука, на высотах в сотни километров — дело очень недалекого будущего. Разве об этом не свидетельствуют со всей убедительностью замечательные полеты советских летчиков-космонавтов Ю. Гагарина, Г. Титова, А. Николаева, П. Поповича, В. Быковского и В. Николаевой-Терешковой на кораблях-спутниках «Восток»? Ведь в этих полетах была достигнута скорость порядка 28 000 километров в час, а высота более 300 километров.
Понятно, что подобные скорости полета только и возможны в космосе, вне пределов земной атмосферы с ее коварным «тепловым барьером». Конечно, корабль-спутник «Восток» не похож на привычный самолет и, в частности, не имеет крыльев и шасси; в нем иначе устроена герметическая кабина с ее системой регенерации воздуха и т. д. Однако это не меняет дела — полет человека с космической скоростью, о чем столько мечтали люди, уже совершен. Нет сомнений, что в будущем с подобными скоростями будут летать и пассажирские ракетопланы.
13* Огромная мощность при малом весе достигается в этих двигателях, конечно, нелегко — срок их жизни, или ресурс, оказывается очень ограниченным. Это — общий закон: за увеличение мощности и уменьшение веса приходится расплачиваться долговечностью.
14* Об этом сообщают журналы «Флюгвельт» (январь 1963 г.) и др.
15* Эта Федерация установила, что до высоты 100 километров все рекорды считаются авиационными, а выше — космическими. Поэтому высота полета более 107 километров, достигнутая самолетом «Х-15» в 1963 г. (об этом сообщено в журнале «Флайт» в январе 1964 г., и др.), является уже «космической».
Одна из первых в мире установок жидкостного ракетного двигателя на отечественном самолете (1943 г.).
Однако и у жидкостного ракетного двигателя есть недостаток — он чрезвычайно неэкономичен при сравнительно небольших скоростях полета, близких к скорости звука. В этих условиях он расходует в 10–15 раз больше топлива на килограмм тяги, чем турбореактивные двигатели. Поэтому продолжительность полета самолета с жидкостным ракетным двигателем (когда он работает на полной тяге) не может превысить обычно 4–5 минут: за эти считанные минуты двигатель полностью расходует те несколько тонн топлива, которые можно разместить в самолете. Этим и объясняется, почему до сих пор жидкостные ракетные двигатели нашли весьма ограниченное применение в военной авиации. Они устанавливаются лишь на истребителях обороны или так называемых истребителях-перехватчиках, предназначенных для борьбы с бомбардировщиками. Только в этих случаях превосходство в скорости и высоте полета компенсирует крайне малую продолжительность полета. Используя полет с выключенным двигателем, можно увеличить эту продолжительность до десятков минут.
Более широкое применение на военных самолетах жидкостные ракетные двигатели получили в качестве вспомогательной силовой установки к турбореактивному или прямоточному двигателю. В этом случае жидкостный ракетный двигатель включается лишь на короткие промежутки времени — для ускорения взлета и набора высоты, в воздушном бою и т. д., что не связано со столь значительным перерасходом топлива. Особенно ценной оказывается эта «помощь» на больших высотах. Известно ведь, что тяга турбореактивного двигателя быстро уменьшается с высотой. Поэтому жидкостный ракетный двигатель, имеющий на земле вдвое, а иногда и втрое меньшую тягу, чем турбореактивный, на большой высоте разовьет уже в несколько раз большую тягу, так как она останется у него неизменной (иди даже несколько возрастет), а тяга турбореактивного двигателя катастрофически упадет вместе с плотностью воздуха.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.