Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать Страница 11
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Брайан Кокс
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 51
- Добавлено: 2019-01-28 17:47:22
Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать» бесплатно полную версию:Эта книга поможет понять теорию относительности и проникнуть в смысл самого известного в мире уравнения. Своей теорией пространства и времени Эйнштейн заложил фундамент, на котором зиждется вся современная физика. Пытаясь постичь природу, физики и сегодня создают теории, которые иногда в корне меняют нашу жизнь. О том, как они это делают, рассказывается в этой книге.Книга будет полезна всем, кто интересуется устройством мира.
Брайан Кокс - Почему Е=mc²? И почему это должно нас волновать читать онлайн бесплатно
На этом пока завершим математические упражнения – нам удалось выяснить, как именно замедляется время на движущемся поезде по отношению ко времени на платформе. Давайте назовем некоторые цифры, для того чтобы прочувствовать происходящее. Если поезд движется со скоростью 300 километров в час, то, как можно убедиться самостоятельно, значение v²/c² представляет собой крохотное число и составляет около 0,000000000000077. При этом коэффициент замедления времени γ равен 1 ÷ √(1 − 0,000000000000077 ≈ 1,0000000000039). Как и ожидалось, эффект весьма незначительный – безостановочное путешествие на протяжении 100 лет на таком поезде удлинит вашу жизнь на 0,0000000000039 года с точки зрения вашего приятеля на платформе, что составляет около одной десятой миллисекунды. Эффект перестанет быть незначительным, когда скорость достигнет 90 % от скорости света. При этом коэффициент замедления времени γ будет больше двух, то есть часы в таком поезде станут тикать вдвое медленнее часов на платформе. В этом и состоит прогноз Эйнштейна, и, будучи добросовестными учеными, мы должны его проверить экспериментальным путем. А пока все это кажется нам несколько невероятным.
Прежде чем перейти к эксперименту, который предоставит нам необходимые доказательства, давайте ненадолго прервемся, чтобы посмотреть, что мы получили. Взглянем на наш мысленный эксперимент с точки зрения пассажира, сидящего в поезде возле часов. Для него часы неподвижны, и свет в них движется вверх и вниз – в точности как в часах, с которыми в кафе на станции сидит другой человек. Пассажир видит, что один такт его часов занимает 6,67 наносекунды, или 150 миллионов раз на каждое сердцебиение, и совершенно корректно (в духе Галилея) полагает, что часы относительно него неподвижны. Человек на платформе видит, что один такт часов в поезде занимает несколько больше времени, чем 6,67 наносекунды, и после 150 миллионов тактов его сердце делает чуть больше одного удара. Это удивительно: с точки зрения человека на платформе он стареет немного быстрее, чем пассажир в вагоне поезда.
Как мы только что увидели, этот эффект крошечный для реального поезда, который развивает скорость несравнимо меньшую, чем скорость света, но все же он существует. В воображаемом мире, где поезд несется почти со скоростью света по очень длинным рельсам, данный эффект усиливается, устраняя все сомнения, что человек на платформе стареет быстрее с его точки зрения.
В ходе реальных экспериментов, если мы хотим проверить эту неточность в концепции абсолютного времени, следует найти способ изучить объекты, которые могут двигаться почти со скоростью света. Только тогда коэффициент замедления времени γ будет заметно отличаться от 1. В идеале хорошо бы иметь дело с объектом, у которого есть фиксированный срок жизни, то есть о котором можно сказать, что он умирает. Тогда мы могли бы посмотреть, увеличивается ли продолжительность его жизни при быстром движении.
К счастью для ученых, такие объекты существуют. Фактически сами ученые построены из них. Элементарные частицы представляют собой крошечные субатомные объекты, которые в силу своего небольшого размера легко разгоняются до огромных скоростей. Они называются элементарными, потому что, насколько можно судить исходя из современного уровня развития технологий, являются самыми маленькими строительными блоками во Вселенной. Чуть ниже мы еще поговорим об элементарных частицах. Пока же хотим упомянуть только две из них: электрон и мюон.
Электрон – это частица, перед которой мы все в долгу, потому что мы построены в том числе и из них. Эти частицы бегут по электрическим проводам, зажигают наши электрические лампочки и разогревают наши электронагреватели. Электрон – частица электричества. Мюон во всех отношениях идентичен электрону, за исключением того, что он тяжелее. Почему природа решила дать нам копию электрона, которая (если все, что вы хотите, – это создать планеты и людей) кажется совершенно излишней, физики пока понять не в состоянии. Но независимо от причины существования мюонов они очень полезны для ученых, желающих проверить теорию относительности Эйнштейна. Дело в том, что у мюонов очень короткая продолжительность жизни, а кроме того, они слишком маленькие и легкие, поэтому их можно разогнать до очень высоких скоростей. И если об электронах мы можем сказать, что они будут жить вечно, то мюон, покоящийся рядом с нами, просуществует где-то около 2,2 микросекунды (микросекунда – одна миллионная доля секунды). Когда мюон умирает, он почти всегда превращается в электрон и еще пару субатомных частиц под названием нейтрино, но это уже информация, без которой мы можем обойтись. Для очень красивой проверки теории Эйнштейна был задействован синхротрон со знакопеременной фокусировкой (Alternating Gradient Synchrotron, AGS) в Брукхейвенской национальной лаборатории на Лонг-Айленде в Нью-Йорке. Во второй половине 1990-х годов ученые в Брукхейвене создали устройство, генерирующее пучок мюонов, движущийся по кольцу диаметром 14 метров со скоростью, составляющей 99,94 % от скорости света. Если мюоны живут только 2,2 микросекунды, то при движении по кругу они должны успевать сделать 15 оборотов до своего распада[15]. В действительности они делали более 400 оборотов, что означает увеличение продолжительности жизни в 29 раз – до 60 микросекунд. Это факт, установленный в ходе эксперимента. Похоже, Эйнштейн был на верном пути, вопрос только в том, насколько точен его прогноз.
Вот где пригодятся математические расчеты, выполненные нами ранее в этой главе. Мы сделали точный прогноз величины, на которую скорость движения замедляет скорость течения времени. Давайте воспользуемся нашим уравнением, чтобы определить величину замедления времени при движении со скоростью 99,94 % от скорости света и установить, на сколько при этом увеличивается продолжительность жизни мюонов. Эйнштейн предсказывает, что для мюонов в Брукхейвене продолжительность жизни повышается в γ = 1 ÷ √(1 − v² ÷ c²) раз, где v/c = 0,9994. Если у вас есть подходящий калькулятор, введите в него числа и подсчитайте результат. Формула Эйнштейна дает γ = 29, что и обнаружили экспериментаторы в Брукхейвенской лаборатории.
Здесь стоит сделать небольшую паузу и поразмышлять о том, что произошло. Используя теорему Пифагора и предположение Эйнштейна о постоянстве скорости света для всех наблюдателей, мы вывели математическую формулу, которая позволила нам предсказать увеличение продолжительности жизни мюонов при их разгоне в ускорителе частиц в Брукхейвенской лаборатории до 99,94 % от скорости света. Наш прогноз относительно того, что движущийся мюон должен жить в 29 раз дольше мюона, находящегося в состоянии покоя, точно согласуется с наблюдениями ученых в Брукхейвенской лаборатории. Только подумайте, как это замечательно. Добро пожаловать в мир физики! Разумеется, в конце 90-х годов XX столетия теория Эйнштейна уже получила всеобщее признание. Ученых в Брукхейвенской лаборатории интересовали другие свойства мюонов, и увеличение продолжительности их жизни оказалось просто бонусом, позволившим наблюдать за мюонами в 29 раз дольше.
Итак, мы должны сделать вывод об эластичности времени, поскольку об этом говорят результаты эксперимента. Скорость течения времени меняется от человека к человеку (или от мюона к мюону) в зависимости от скорости их движения.
Но оказывается, мы кое-что упустили (как будто нам мало странного поведения времени), и внимательный читатель, возможно, это заметил. Вернемся к мюонам, быстро движущимся в ускорителе. Давайте разместим в кольце небольшую финишную черту и подсчитаем, сколько раз мюоны пересекут ее, прежде чем погибнуть. С точки зрения стороннего наблюдателя они пересекут ее 400 раз. А с точки зрения движущегося мюона? Конечно 400, в противном случае все это было бы полной бессмыслицей. Проблема в том, что если бы мы двигались вместе с мюонами, то, согласно нашим наблюдениям, их жизнь составляла бы всего 2,2 микросекунды. Тем не менее за этот короткий срок мюоны должны успеть сделать более 400 оборотов в ускорителе. Так что же происходит? 400 оборотов за 2,2 микросекунды кажутся совершенно невозможными. К счастью, из этой ситуации есть выход: можно представить, что в восприятии мюона кольцо становится меньше. Чтобы быть полностью последовательными, длина кольца, которую определили вы с мюоном, должна уменьшиться ровно настолько, насколько, с точки зрения стороннего наблюдателя, увеличилась продолжительность жизни мюона. Получается, что изменчиво не только время, но и пространство! Как и замедление времени, это реальный эффект, а не иллюзия. Реальные объекты действительно сжимаются в процессе движения. В качестве несколько гротескного примера представьте себе четырехметровый автомобиль, который пытается втиснуться в гараж длиной 3,9 метра. Согласно Эйнштейну, если автомобиль движется быстрее, чем 22 % от скорости света, то он поместится в гараже – по крайней мере на ничтожную долю секунды до того, как передний бампер упрется в стенку гаража, а задний уже пересечет линию ворот. Если вы проверите математические выкладки, то убедитесь, что 22 % от скорости света как раз хватит. Автомобиль, движущийся с еще большей скоростью, сожмется до размера менее 3,9 метра; но если скорость будет меньше, он не поместится в гараж.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.