Рудольф Сворень - В просторы космоса, в глубины атома [Пособие для учащихся] Страница 11
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Рудольф Сворень
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 40
- Добавлено: 2019-01-29 12:00:44
Рудольф Сворень - В просторы космоса, в глубины атома [Пособие для учащихся] краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Рудольф Сворень - В просторы космоса, в глубины атома [Пособие для учащихся]» бесплатно полную версию:В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки
Рудольф Сворень - В просторы космоса, в глубины атома [Пособие для учащихся] читать онлайн бесплатно
Известно, что все вещества можно разделить на две группы — проводники и диэлектрики (изоляторы): в проводниках есть свободные электрические заряды, а в диэлектриках свободных зарядов нет. Между проводниками и диэлектриками находится еще одна большая группа веществ, которые называют полупроводниками. В полупроводниках есть свободные заряды, но их во много тысяч раз меньше, чем, скажем, в меди или железе. Поэтому полупроводники сами по себе проводят ток значительно хуже, чем классические проводники — металлы.
Обратите внимание на оговорку «сами по себе» — от нее начинается путь к удивительным явлениям, которые как раз и определили интерес современной техники к полупроводниковым материалам.
Физики с виртуозной точностью научились производить с полупроводниками различные операции, которые можно объединить одним понятием — «легирование». Легирование есть не что иное, как введение различных примесей в чистый полупроводниковый материал. Эти примеси, даже если они в ничтожных количествах — миллионные и миллиардные доли процента, — радикально меняют свойства «самого по себе» полупроводника.
Действие примесей в самом упрощенном виде можно описать так: они занимают места в кристаллической решетке основного вещества; в результате такой замены в полупроводнике резко возрастает количество свободных зарядов, и по своим свойствам он заметно приближается к металлическому проводнику.
После введения некоторых примесей — их называют донорами — в полупроводнике появляются свободные электроны; на рисунках в популярных брошюрах их обычно изображают в виде этаких маленьких бегающих шариков или кружков с «минусом» в середине. Другие примеси — их называют акцепторами — создают в полупроводнике свободные положительные заряды; на рисунках их изображают тоже в виде шариков или кружков, но уже, конечно, с «плюсом» в середине. Причем в таком рисунке значительно больше искажается истина, чем там, где в виде шариков изображались свободные электроны. Дело в том, что свободных, подвижных частиц с положительным зарядом, с «плюсом», в полупроводниковом материале вообще нет. Их роль выполняют так называемые «дырки» — положительные заряды неподвижных атомов с недостающими электронами на орбите. Такой атом может перехватить электрон у своего соседа, и теперь уже тот станет носителем положительного заряда. В результате быстрого перескакивания электрона из атома в атом в полупроводнике, по сути дела, перемещается «дырка», т. е., по сути дела, движется положительный заряд.
Полупроводниковые материалы с донорными примесями называют полупроводниками n-типа, а с акцепторными примесями — полупроводниками p-типа. Главное волшебство начинается там, где в одном кристалле соприкасаются участки с электрической проводимостью разного типа. Такая область соприкосновения называется р-n-переходом (рис. 1).
Уже одиночный р-n-переход есть основа вполне законченного электронного прибора — диода, который пропускает ток только в одну сторону: только от зоны р к зоне n. Он делает то, что раньше поручали электровакуумному диоду — радиолампе с двумя металлическими электродами. А трехслойный «пирог» — кристалл с двумя переходами, т. е. со структурой р-n-р или n-р-n — это уже усилительный прибор, транзистор.
Основой традиционных полупроводниковых диодов или транзисторов всегда был однородный полупроводниковый кристалл — германий или кремний. В самом кристалле, как уже говорилось, имелись области с разными примесями, но основной материал оставался неизменным. Но существуют еще так называемые гетероструктуры, в которых не только создают области с разными свободными зарядами — электронами и «дырками», но и по мере выращивания кристалла меняют саму его основу, само вещество, из которого строится кристаллическая решетка. Начинают, на пример, выращивать кристалл из одного раствора, из арсенида галлия GaAs, а продолжают выращивание, заменяя частично или полностью атомы галлия на атомы алюминия (рис. 5, 7). Таким образом, гетеропереход — это контакт различных по химическому составу полупроводников, осуществленный в одном кристалле.
Для чего это нужно? Для чего простой однородный кристалл заменять сложными гетероструктурами? Конечно же, делается это ради определенных практических выигрышей. Создание гетероструктур есть принципиально новый способ управления физическими процессами, происходящими в полупроводниковом приборе. Очень отдаленно это напоминает создание сложных многоэлектродных радиоламп: чтобы управлять движением зарядов в лампе, улучшать ее усилительные способности, в баллон вводили дополнительные электроды — ставили дополнительные спирали и сетки на пути электронного луча, тормозили или ускоряли электроны электрическими полями, сжимали электронный поток своего рода отражающими пластинами. В полупроводниковый кристаллик не влезешь, чтобы как-то повлиять на движение зарядов в нем. Но зато тонкими технологическими приемами, созданием гетероструктур, можно влиять на физические свойства кристаллика в определенных его участках и именно таким способом добиваться нужных характеристик будущего прибора.
Уже с первых своих шагов физика полупроводников вступила в союз с оптикой, и в наши дни благодаря этому союзу техника получила немало прекрасных подарков, таких, например, как полупроводниковые фотоэлементы, превращающие световую энергию в электрическую, — из них, в частности, собраны панели солнечных батарей, которые кормят электроэнергией космические корабли. Или таких, как светодиоды, из которых собирают цифровые табло многих микрокомпьютеров. Или, наконец, полупроводниковые лазеры — предмет исследований нашей четверки молодых физиков.
Полупроводниковый лазер — это тот же диод. Или, если точнее, определенного типа полупроводниковый диод при определенных условиях может давать лазерное излучение. Когда диод включен в прямом направлении и пропускает так, то к р-n-переходу с обеих сторон движутся заряды: из зоны n — электроны, из зоны р — «дырки». В узкой области р-n-перехода они рекомбинируют, объединяются — свободные электроны занимают места в атомах с недостающими электронами. И каждый такой акт рекомбинации сопровождается выделением порции энергии, часто излучением кванта в видимой или инфракрасной области спектра. Частота (длина волны) излучения зависит от так называемой ширины запрещенной зоны данного полупроводника. Это настолько важная характеристика, что о ней стоит сказать несколько слов особо.
Электроны на орбитах атома могут обладать строго определенными запасами энергии, или, иными словами, могут иметь строго определенные энергетические уровни. Их принято отображать горизонтальными линиями на диаграмме уровней: чем больше энергия электрона, тем выше расположена линия (рис. 2).
Самые высокие — уровни внешних, валентных электронов, комплект этих уровней называют валентной зоной. Здесь слово «зона» не имеет ничего общего с районами кристалла, с его зонами n и р; просто два разных понятия названы одним и тем же словом «зона». Можно каким-то образом еще больше увеличить энергию электрона, но при этом он уже уйдет из атома, станет свободной частицей. Такие электроны как раз и участвуют в создании тока, их называют электронами проводимости. А комплект энергетических уровней этих электронов образует так называемую зону проводимости. Она, конечно, выше, чем валентная зона. И не просто выше — между валентной зоной и зоной проводимости всегда существует скачок; имеется некоторый диапазон энергетических состояний, в которых электрон в принципе не может находиться. Именно «в принципе» — это запрещено законами квантовой механики. Вот этот диапазон запрещенных состояний, запрещенных уровней и называют запрещенной зоной.
Энергия электронов, их энергетический уровень, измеряется в электронвольтах. В этих же единицах измеряется и ширина запрещенной зоны, т. е. различие энергетических уровней. Ширина запрещенной зоны определяется самим полупроводниковым веществом, его химическим составом и структурой.
Рекомбинация пары электрон — «дырка» — это, по сути дела, переход электрона из зоны проводимости в валентную зону. Энергия, которую теряет электрон, как раз и расходуется на излучение. И она, эта энергия, естественно, тем больше, чем выше энергетическая ступенька, с которой «спрыгнул» электрон. А чем большая энергия вложена в квант излучения, тем выше его частота, короче длина волны.
В зоне проводимости, так же как и в валентной, много близких уровней, и из области p-n-перехода, где рекомбинируют электроны и «дырки», идет излучение разных, хотя и довольно близких, частот. Излучение, разумеется, появляется лишь тогда, когда через р-n-переход идет ток, и расходится оно по кристаллу во все стороны. Пока это еще не лазер; так работает, скажем, светодиод: создал ток, получил свет. Чтобы получить лазерный луч, т. е. монохроматическое, когерентное излучение, нужно выполнить целый ряд особых условий. Главное из них — необходимо добиться, чтобы многие электроны одновременно излучали на близких частотах. На очень близких. А для этого в свою очередь нужно, чтобы большое количество электронов поднялось на очень близкие энергетические ступеньки в зоне проводимости. И итог, к сожалению, не очень радостный — для получения лазерного излучения из р-n-перехода нужно пропустить через него большой ток (рис. 3). Этот ток не что иное, как ток накачки, он поставляет в р-n-переход сами излучатели, поставляет электроны и «дырки».
Жалоба
Напишите нам, и мы в срочном порядке примем меры.