Джеймс Глейк - Хаос. Создание новой науки Страница 12
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Джеймс Глейк
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 75
- Добавлено: 2019-01-28 16:19:31
Джеймс Глейк - Хаос. Создание новой науки краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Джеймс Глейк - Хаос. Создание новой науки» бесплатно полную версию:В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе.Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор…История науки о хаосе — не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Эта книга — яркое и образное повествование о сложных и глубоких вещах, окрашенное драматизмом и поэтичностью. Прочитав «Хаос», вы уже никогда не будете смотреть на мир прежними глазами.
Джеймс Глейк - Хаос. Создание новой науки читать онлайн бесплатно
Когда Смэйл обратился к динамическим системам, топологией, как и вообще математикой, занимались люди, относившиеся с пренебрежением к прикладному применению математических знаний. Физика и топология — дисциплины, родственные по происхождению. Однако математики начисто забыли об этом, изучая очертания фигур ради них самих. Смэйл, будучи до мозга костей математиком, разделял общее заблуждение, полагая, впрочем, что кое-что в топологии может обогатить и физику. Того же мнения держался в начале XX века Пуанкаре.
Так случилось, что первый шаг в новой области Смэйл сделал в неверном направлении. Он предложил закон, гласивший примерно следующее: система может вести себя беспорядочно, но подобное поведение не является устойчивым. Устойчивость — «устойчивость по Смэйлу», как иногда называли ее математики, — представляла собой решающее свойство. Устойчивым именовалось такое поведение системы, которое не могло измениться только в силу крохотной флуктуации одного из численных параметров. Любая система обнаруживает как упорядоченное, так и хаотичное поведение. Уравнения, которые описывают стоящий вертикально на острие грифеля карандаш, математически весьма удачно решаются, если центр тяжести карандаша располагается прямо над точкой опоры. Однако поставить карандаш в такое положение нельзя, поскольку оно нестабильно, — едва заметные колебания выводят систему из равновесия. С другой же стороны, шарик, лежащий в лунке, там и останется. Даже если его слегка потревожить, шар вернется в прежнюю позицию. Согласно гипотезе Смэйла, любое поведение системы, фактически доступное регулярному наблюдению, должно являться устойчивым, так как небольшие помехи и изменчивость в реальных системах неизбежны, а мы никогда не знаем точных параметров. Если вам необходима модель, физически реальная и одновременно противостоящая незначительным изменениям, то такая модель, по мнению большинства физиков, определенно является устойчивой.
Зима 1959 г. принесла Смэйлу, находившемуся тогда в Рио-де-Жанейро, плохие новости. Вскоре после Рождества в дом, где он обитал с женой и двумя малышами, принесли письмо от коллеги. Высказанная Смэйлом догадка пролила свет на целую группу устойчивых дифференциальных уравнений, но не более того. С точки зрения Смэйла, к любой хаотичной системе можно было приближаться сколь угодно близко, используя выделенный им класс уравнений, но в этом он ошибался. В письме его коллега сообщал, что многие системы вовсе не так понятны, как представлялось Смэйлу. В доказательство автор письма приводил систему, где сосуществовали хаос и устойчивость. И эта система была вполне «крепкой»! Слегка потревожив ее, можно было заметить, как появляются непрогнозируемые черты, а ведь в реальности в любую природную систему вторгается посторонний шум. Устойчивая, но поражающая своей необычностью… Смэйл с недоверием вчитывался в строки письма, однако через некоторое время убедился в правоте коллеги.
Хаос и неустойчивость — понятия, смысл которых еще не отлился в чеканные формулировки, — вовсе не синонимы. Хаотичная система вполне может демонстрировать устойчивость, если определенное ее иррегулярное качество продолжает существовать вопреки незначительным помехам, о чем наглядно свидетельствовала система Лоренца (Смэйл и услышит о ней лишь годы спустя). Открытый Лоренцем хаос при всей своей непредсказуемости являлся столь же устойчивым, как шарик в лунке. Можно добавить шум в эту систему, покачать, хорошенько разболтать ее, помешать движению внутри нее — все равно, когда возмущение уляжется и мимолетные факторы исчезнут, словно замирающее эхо в глубоком каньоне, система вновь вернется к своему прежнему беспорядочному состоянию. Локально она непредсказуема, глобально — устойчива. Реальные же динамические системы вели себя, повинуясь куда более сложному набору правил, чем можно вообразить. Пример, который содержался в адресованном Смэйлу послании, являл собой другую простую систему, открытую более тридцати лет назад, но незаслуженно забытую. Эта система — колеблющаяся электрическая цепь, по сути своей маятник, нелинейный и подвергаемый, подобно качелям, периодическому воздействию силы.
Если быть еще более точным, речь шла о вакуумной лампе, сконструированной в 20-е годы голландским инженером-электронщиком Балтазаром ван дер Полем. Современный студент-физик легко разберется в поведении такого осциллятора, взглянув на экран осциллографа, но ван дер Поль, за неимением последнего, был вынужден изучать собственное изобретение, прислушиваясь к изменениям тональности звука в телефонных наушниках. Из раза в раз изменяя силу подаваемого электротока, он, к своему удовольствию, обнаружил в поведении системы некий порядок: будто взбегая по лестнице, тон «перепрыгивал» от частоты к частоте. Но однажды голландец заметил кое-что очень странное: звуки в наушниках стали иррегулярными. Изобретатель затруднялся объяснить, что происходит в лампе. Впрочем, это его не слишком беспокоило. «Порой посторонние шумы, которые мы слышим в телефонных наушниках, сигнализируют о резком переходе к более низкой частоте, — отмечал он в письме в журнал „Нейчур“. — Они носят вспомогательный характер». Ван дер Поль входил в число ученых, имевших представление о хаосе, пусть и смутное, однако он не смог бы облечь свои идеи в форму специальных терминов. Создатели вакуумных ламп считали блокирование частоты делом весьма важным. Для людей же, пытавшихся проникнуть в природу сложного, гораздо интереснее был «посторонний шум», исходивший от взаимодействия токов высокой и низкой частот.
Хотя гипотеза Смэйла не подтвердилась, она дала новое направление его исследованиям сложных динамических систем. Ряд математиков по-новому оценили возможности осциллятора ван дер Поля. Смэйл приложил их выводы к неизвестной области. Единственным его осциллографом был мозг, но этот мозг довели до совершенства годы изучения топологической Вселенной. Смэйл досконально разобрался в спектре активности осциллятора, в его, по выражению физиков, фазовом пространстве. Любое состояние системы, зафиксированное в определенный момент времени, раскрывалось в одной точке фазового пространства. Все данные о положении или скорости системы содержались в координатах указанной точки. По мере изменения системы точка меняла свои координаты в фазовом пространстве, вычерчивая траекторию.
Фазовое пространство простой системы, вроде маятника, вероятно, представляет собой прямоугольник. Угол колебаний маятника в заданный момент времени определяет положение точки на оси восток — запад, а его скорость — на оси север — юг. Для маятника, стабильно качающегося взад и вперед, траектория в фазовом пространстве напоминает петлю, закручивающуюся вновь и вновь, по мере того как система раз за разом проходит через те же состояния.
Рис. 2.1. Построение изображений в фазовом пространстве. Традиционные временные последовательности (вверху) и траектории в фазовом пространстве (внизу) используются как два вида наглядного отображения одних и тех же данных и поведения системы в течение длительного периода времени. Первая (слева) система сходится в одной точке фазового пространства, что подразумевает стабильное состояние. Вторая периодически повторяет саму себя, образуя циклическую орбиту. Третья также обнаруживает периодическое повторение, но в более сложном, «вальсовом» ритме, демонстрируя цикл с тремя волнами. Четвертая хаотична.
Вместо того чтобы наблюдать за траекторией, Смэйл сосредоточился на изучении целостного пространства в момент изменения системы, например во время увеличения движущей силы. При этом он сконцентрировал свои размышления на некой геометрической сущности, абстрагировавшись от сути физической. Смэйл анализировал топологические трансформации в фазовом пространстве, т. е. такие преобразования, как растяжение и сжатие. Иногда эти преобразования несли в себе прямой физический смысл. Так, рассеивание и потеря энергии на трение наглядно отображались тем, что очертания системы в фазовом пространстве сжимались, словно опадающий воздушный шар, сокращаясь в итоге до точки, в которой система окончательно останавливалась. Смэйл понял, что для воспроизведения всей неупорядоченности осциллятора ван дер Поля в фазовом пространстве необходимо использовать новый комплексный набор трансформаций, и быстро превратил идею о зрительном представлении глобального поведения системы в неизвестную ранее модель. Его изобретение — овладевший умами образ хаоса — представляло собой структуру, известную под названием подковы.
Рис. 2.2. Подкова Смэйла. Такая топологическая трансформация заложила весьма простую основу толкования хаотичных свойств динамических систем: пространство растягивается в одном направлении, сжимается в другом, а затем перегибается. При повторении операции образуется нечто вроде структурированного беспорядка, подобного тому, который мы получаем, сворачивая пирожные из слоеного теста. Две точки, оказавшиеся рядом в конце преобразований, вначале могли находиться далеко друг от друга.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.